<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>First Semester</th>
<th>Hours</th>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 101</td>
<td>Engineering Exploration</td>
<td>1</td>
<td>EGR 103</td>
<td>Engineering Exploration II</td>
</tr>
<tr>
<td>EGR 102</td>
<td>Fundamentals of Engineering Computing</td>
<td>MATH 2713</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CIS/WRD 110</td>
<td>Comp. & Comm I</td>
<td>ENGL 1013</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MATH 213</td>
<td>Calculus I</td>
<td>MATH 2315</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CHE 106</td>
<td>General College Chemistry I</td>
<td>CHEM 1214</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>First Semester</th>
<th>Hours</th>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAE 200</td>
<td>Principles of Biosystems Engr</td>
<td>3</td>
<td>MA 214</td>
<td>Calculus IV</td>
</tr>
<tr>
<td>BIO 310</td>
<td>Introduction to Biology</td>
<td>BIOL 1204</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MA 213</td>
<td>Calculus III</td>
<td>MATH 3314</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PHY 232</td>
<td>General University Physics</td>
<td>PHYS 2424</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>PHY 242</td>
<td>General University Physics Lab</td>
<td>PHYS 2424</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CE 106</td>
<td>Computer Graphics and Communication</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>First Semester</th>
<th>Hours</th>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAE 402</td>
<td>Biosystems Engineering Design I</td>
<td>2</td>
<td>BAE 403</td>
<td>Biosystems Engineering Design II</td>
</tr>
<tr>
<td>BAE 408</td>
<td>Senior Seminar</td>
<td>1</td>
<td>BAE 417</td>
<td>Introduction to Mechanical Systems</td>
</tr>
<tr>
<td>Core/Elec [1]</td>
<td>3</td>
<td>Core/Elec [1]</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th>First Semester</th>
<th>Hours</th>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAE 402</td>
<td>Biosystems Engineering Design I</td>
<td>2</td>
<td>BAE 403</td>
<td>Biosystems Engineering Design II</td>
</tr>
<tr>
<td>BAE 408</td>
<td>Senior Seminar</td>
<td>1</td>
<td>BAE 417</td>
<td>Introduction to Mechanical Systems</td>
</tr>
<tr>
<td>Core/Elec [1]</td>
<td>3</td>
<td>Core/Elec [1]</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

[*] Courses required for Engineering Standing. A cumulative UK GPA of at least a 2.5 and successful completion of all pre-major courses. Successful completion of pre-major courses with at least a 2.5 GPA. Completion of BAE 200 with a grade of C or better. If a course is repeated the best grade will be used for calculation of GPA in the pre-major courses required for Engineering Standing.

A minimum of 9 hours are to be taken in addition to the 9 core hours selected by the student. The technical electives allow the student an opportunity to concentrate or gain depth in one or more of the various specialty areas of biosystems engineering. The technical electives must be selected from the courses listed below and approved by the student's academic advisor. Other courses may be considered, each on its individual merit.

[2] Biological Science electives:
- BIO 208 Principles of Microbiology
- PLS 366 Fundamentals of Soil Science
- CE 555 Microbial Aspects of Environmental Engineering
CHEMICAL ENGINEERING

Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 101[*]</td>
<td>Engineering Exploration</td>
<td>1</td>
<td>EGR 103[*]</td>
</tr>
<tr>
<td>CIS/WRD 110 [*][a]</td>
<td>Comp & Comm I</td>
<td>3</td>
<td>ENGL 1013</td>
</tr>
<tr>
<td>MA 113 [*]</td>
<td>Calculus I</td>
<td>4</td>
<td>MA 114 [*]</td>
</tr>
<tr>
<td>CHE 105 [*]</td>
<td>General College Chemistry I</td>
<td>4</td>
<td>PHY 231 [*]</td>
</tr>
<tr>
<td>CHE 111 [*]</td>
<td>General College Chemistry I Lab</td>
<td>1</td>
<td>UK Core</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CME 200[*]</td>
<td>Process Principles</td>
<td>3</td>
<td>CME 220</td>
</tr>
<tr>
<td>MA 213 [*]</td>
<td>Calculus III</td>
<td>4</td>
<td>CME 320</td>
</tr>
<tr>
<td>CHE 107 [*]</td>
<td>General College Chemistry II</td>
<td>3</td>
<td>MA 214</td>
</tr>
<tr>
<td>CHE 113 [*]</td>
<td>General College Chemistry II Lab</td>
<td>2</td>
<td>PHY 232</td>
</tr>
<tr>
<td>MSE 201</td>
<td>Materials Science</td>
<td>3</td>
<td>STA 361</td>
</tr>
<tr>
<td>UK Core</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CME 330</td>
<td>Fluid Mechanics</td>
<td>3</td>
<td>CME 006</td>
</tr>
<tr>
<td>CME 415</td>
<td>Separation Processes</td>
<td>3</td>
<td>CME 420</td>
</tr>
<tr>
<td>CHE 230</td>
<td>Organic Chemistry I</td>
<td>3</td>
<td>CME 425</td>
</tr>
<tr>
<td>CHE 231</td>
<td>Organic Chemistry I Lab</td>
<td>3</td>
<td>CME 432</td>
</tr>
<tr>
<td>CHE 446G</td>
<td>Physical Chemistry for Engineers</td>
<td>3</td>
<td>CHE 232</td>
</tr>
<tr>
<td>WRD 204 [*]</td>
<td>Technical Writing</td>
<td>3</td>
<td>Engineering/Science Elective [1]</td>
</tr>
<tr>
<td>UK Core</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CME 006</td>
<td>The Engineering Profession</td>
<td>0</td>
<td>CME 006</td>
</tr>
<tr>
<td>CME 433</td>
<td>Chemical Engineering Laboratory II</td>
<td>3</td>
<td>CME 456</td>
</tr>
<tr>
<td>CME 455</td>
<td>Chemical Engr Process Design I</td>
<td>3</td>
<td>CME 462</td>
</tr>
<tr>
<td>CME 470</td>
<td>Professionalism, Ethics and Safety</td>
<td>2</td>
<td>Engineering/Science Elective [1]</td>
</tr>
<tr>
<td>Engineering/Science Elective [1]</td>
<td>3</td>
<td>UK Core</td>
<td>3</td>
</tr>
<tr>
<td>UK Core</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[*] Courses required for Engineering Standing. Success after completion of pre-major courses with a GPA of at least 2.5. Completion of CME 200 with a grade of C or better. Successful completion of CME 215 with a grade of C or better.

[a] Students who take ENGL 1103 and 1023 should also take COMM 2103 or 2503.

[1] Transfer students who take EGR 101 and EGR 103 will fulfill UK Core: Arts & Creativity requirement.

[1] Graduation Composition and Communication Requirement (GCCCR) course.

1. **Engineering/Science Elective Structure.** Students must select four courses as follows:
 1. Chemical Engineering elective [CME 395, 404G, 505, 515, 544, 554, 556, 580, 599] [CME 395 (3 credits) may be used to satisfy only one elective requirement]
 2. Science/math elective (totaling three or more credit hours) that is not a more elementary version of a required course. [Students may combine multiple qualifying courses that total 3 credits (e.g. pre-medical students may wish to combine PHY 241, 242 and CHE 233)]
 b. Chemistry (CHE 226, 250, 510 and above), Biology (BIO 148 and above)
 c. Physics (PHY 241 and above)
 d. Other courses by approval of Director of Undergraduate Studies
 3. Engineering elective (level 300 and above) that does not significantly duplicate content in a core chemical engineering course (e.g. ME 330) OR a CME Elective (CME 395 and above).
 4. Chemical engineering elective (CME 395 and above) OR one engineering elective (level 300 and above) OR one science/math elective as described above.

[Pathway for Lindsey Wilson College Transfers - Fall 2018]
Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 101 [*]</td>
<td>1</td>
</tr>
<tr>
<td>EGR 102</td>
<td>2</td>
</tr>
<tr>
<td>EGR 111 [*]</td>
<td>3</td>
</tr>
<tr>
<td>MA 113 [*]</td>
<td>4</td>
</tr>
<tr>
<td>CHE 105 [*]</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 103 [*]</td>
<td>2</td>
</tr>
<tr>
<td>CIS/WRD 111 [*]</td>
<td>3</td>
</tr>
<tr>
<td>MA 114 [*]</td>
<td>4</td>
</tr>
<tr>
<td>PHY 231 [*]</td>
<td>4</td>
</tr>
<tr>
<td>PHY 241 [*]</td>
<td>1</td>
</tr>
<tr>
<td>ENGL 101</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 102</td>
<td>3</td>
</tr>
<tr>
<td>MA 113</td>
<td>4</td>
</tr>
<tr>
<td>PHY 231</td>
<td>4</td>
</tr>
<tr>
<td>PHY 241</td>
<td>1</td>
</tr>
</tbody>
</table>

[*] Courses required for Engineering Standing. A cumulative UK GPA of at least 2.5 and successful completion of all pre-major courses. Successful completion of pre-major courses with at least a 2.5 GPA and a C or better in each course. If a course is repeated, the best grade will be used for calculation of GPA in the courses required for Engineering Standing.

[9] Transfer students who declare a major and meet the prerequisites will take EGR 215 "Introduction to the Practice of Engineering for Transfer Students" in place of EGR 101 and EGR 103. EGR 215 will fulfill UK Core: Arts & Creativity requirement.

[*] Graduation Composition and Communication Requirement (GCCCR) course.

[1] To be chosen from any of the courses at the 300-level of above that carry a CE prefix and in which a student is qualified to enroll, exclusive of required courses. Engineering elective courses are typically taught once a year.

Sophomore Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 211 [*]</td>
<td>4</td>
</tr>
<tr>
<td>CHE 107 [*]</td>
<td>3</td>
</tr>
<tr>
<td>EM 221 [+]</td>
<td>3</td>
</tr>
<tr>
<td>MA 213 [*]</td>
<td>4</td>
</tr>
<tr>
<td>CE 110 [*]</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG 312</td>
<td>3</td>
</tr>
<tr>
<td>MNG 303</td>
<td>1</td>
</tr>
<tr>
<td>MA 214</td>
<td>3</td>
</tr>
<tr>
<td>PHY 232</td>
<td>4</td>
</tr>
<tr>
<td>PHY 242</td>
<td>1</td>
</tr>
<tr>
<td>STA 381</td>
<td>3</td>
</tr>
<tr>
<td>STA 381</td>
<td>3</td>
</tr>
</tbody>
</table>

[+] Transfer students who declare a major and meet the prerequisites will take EGR 215 "Introduction to the Practice of Engineering for Transfer Students" in place of EGR 101 and EGR 103. EGR 215 will fulfill UK Core: Arts & Creativity requirement.

Junior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRD 204 [*]</td>
<td>3</td>
</tr>
<tr>
<td>EES 220</td>
<td>4</td>
</tr>
<tr>
<td>CE 303</td>
<td>3</td>
</tr>
<tr>
<td>CE 341</td>
<td>4</td>
</tr>
<tr>
<td>CE 381</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 331</td>
<td>3</td>
</tr>
<tr>
<td>CE 351</td>
<td>3</td>
</tr>
<tr>
<td>CE 382</td>
<td>3</td>
</tr>
<tr>
<td>CE 382</td>
<td>3</td>
</tr>
<tr>
<td>CE 381</td>
<td>3</td>
</tr>
</tbody>
</table>

[+] Transfer students who declare a major and meet the prerequisites will take EGR 215 "Introduction to the Practice of Engineering for Transfer Students" in place of EGR 101 and EGR 103. EGR 215 will fulfill UK Core: Arts & Creativity requirement.

Senior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 451G</td>
<td>4</td>
</tr>
<tr>
<td>CE 471G</td>
<td>4</td>
</tr>
<tr>
<td>CE 48X</td>
<td>3</td>
</tr>
<tr>
<td>UK Core</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 401</td>
<td>1</td>
</tr>
<tr>
<td>CE 429</td>
<td>3</td>
</tr>
<tr>
<td>CE 401</td>
<td>1</td>
</tr>
<tr>
<td>EM 313</td>
<td>3</td>
</tr>
<tr>
<td>UK Core</td>
<td>3</td>
</tr>
<tr>
<td>UK Core</td>
<td>3</td>
</tr>
</tbody>
</table>

[4] Students are required to select two design electives from different areas. Choose from: CE 508, CE 531 or CE 533, CE 534, CE 549, CE 551, CE 579, CE 589. Design elective courses are typically taught once a year.
COMPUTER ENGINEERING

Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 102 Fundamentals of Engng Computing</td>
<td>1</td>
<td>CIS/WRD 111 [a] Comp & Comm I</td>
<td>2</td>
</tr>
<tr>
<td>MA 113 Calculus I</td>
<td>3</td>
<td>MA 114 Calculus II</td>
<td>3</td>
</tr>
<tr>
<td>CHE 105 General College Chemistry I</td>
<td>4</td>
<td>PHY 241 General University Physics I</td>
<td>4</td>
</tr>
<tr>
<td>MA 114 Calculus II</td>
<td>3</td>
<td>PHY 231 General University Physics I</td>
<td>4</td>
</tr>
<tr>
<td>CIS/WRD 110 [*] [a] Comp & Comm I</td>
<td>2</td>
<td>PHY 241 General University Physics I</td>
<td>4</td>
</tr>
<tr>
<td>CIS/WRD 111 [a] Comp & Comm II</td>
<td>2</td>
<td>PHY 231 General University Physics I</td>
<td>4</td>
</tr>
<tr>
<td>CIS/WRD 110 [*] [a]</td>
<td>2</td>
<td>PHY 241 General University Physics I</td>
<td>4</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 213 Calculus III</td>
<td>4</td>
<td>MA 214 Calculus IV</td>
<td>3</td>
</tr>
<tr>
<td>PHY 232 General University Physics</td>
<td>4</td>
<td>EE 215 Circuits II</td>
<td>4</td>
</tr>
<tr>
<td>CS 216 Intro to Software Engt Techniques</td>
<td>3</td>
<td>CPE 287 Intro to Embedded Systems</td>
<td>4</td>
</tr>
<tr>
<td>CPE 200 Comp Engr Sophomore Seminar</td>
<td>1</td>
<td>CS 270 Systems Programming</td>
<td>3</td>
</tr>
<tr>
<td>CPE 252 Digital Logic Design</td>
<td>4</td>
<td>CS 275 Discrete Mathematics</td>
<td>4</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 223 AC Circuits</td>
<td>4</td>
<td>EE 421G Signals and Systems</td>
<td>3</td>
</tr>
<tr>
<td>CS 315 Algorithm Design and Analysis</td>
<td>3</td>
<td>EE 461G Introduction to Electronics</td>
<td>3</td>
</tr>
<tr>
<td>STA 381 Engineering Statistics A Concept App</td>
<td>3</td>
<td>UK Core</td>
<td>3</td>
</tr>
<tr>
<td>UK Core</td>
<td>3</td>
<td>UK Core</td>
<td>3</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK Core</td>
<td>3</td>
<td>UK Core</td>
<td>3</td>
</tr>
</tbody>
</table>

[1] Courses required for Engineering Standing. A cumulative UK GPA of at least a 2.5 and successful completion of all pre-major courses with a C or better in each course. If a course is repeated the best grade will be used for calculation of GPA in the courses required for Engineering Standing.

[a] Students who take ENGL 1103 and 1023 should also take COMM 2103 or 2503.

[9] Transfer students who declare a major and meet the prerequisites will take EGR 215 "Introduction to the Practice of Engineering for Transfer Students" in place of EGR 101 and EGR 103. EGR 215 will fulfill UK Core: Arts & Creativity requirement.

[∞] Graduation Composition and Communication Requirement (GCCR) course.

[1] CPE 480 is only taught in the spring semester. CPE 490 is only taught in the fall semester. CPE 491 is only taught in the spring semester.

[2] Technical electives may be selected from upper-division engineering, mathematics, statistics, statistics, computer science, physics, or other technically-related fields excluding more elementary version of required courses. To be selected in consultation with academic advisor. If a student wishes to use CS 499 instead of CPE 490 and CPE 491 to fulfill the GCCR and senior design requirements, the student must receive approval from the DUS to select an additional technical elective that supports the proposed CS 499 project.

[3] 400 level CS courses and 500 level CPE courses with emphasis in the computer engineering area and excluding EE 595. To be selected in consultation with academic advisor.

[4] Hardware electives are senior level courses in the CPE or EE disciplines and shall be selected from the following list and/or selected in consultation with academic advisor:

- EE 582 Hardware Description Languages and Programmable Logic
- CPE 584 Introduction of VLSI Design and Testing
- CPE 585 Fault Tolerant Computing
- CPE 586 Communication and Switching Networks

[5] Software electives are senior level courses in the CPE or CS disciplines and shall be selected from the following list and/or selected with academic advisor:

- CS 441G Compilers for Algorithmic Languages
- CS 471G Networking and Distributed Operating Systems
- CS 570 Modern Operating Systems
- CPE 588 Real-Time Digital Systems
Computer Science Pathway for Lindsey Wilson College Transfers - Fall 2018

Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 101 [*] Engineering Exploration</td>
<td>1</td>
<td>EGR 103 [*] Engineering Exploration II</td>
<td>2</td>
</tr>
<tr>
<td>CIS/WRD 110 [^] Comp & Comm I</td>
<td>3</td>
<td>MA 113 [*] Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>MA 111 [*] Calculus I</td>
<td>3</td>
<td>PHY 231 [*] or Gen Univ Physics I</td>
<td>4</td>
</tr>
<tr>
<td>CHE 105 or Gen Col Chemistry I or CHEM 3214</td>
<td>3</td>
<td>CHE 105 or Gen Col Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2314 [^] or General Physics Lab</td>
<td>4</td>
<td>PHYS 2414</td>
<td>4</td>
</tr>
</tbody>
</table>

[^] Courses required for Engineering Standing. A cumulative UK GPA of at least 2.5 and successful completion of all pre-major courses. Successful completion of pre-major courses with at least a 2.5 GPA. If a course is repeated, the best grade will be used for calculation of GPA in the courses required for Engineering Standing.

[^] Students who take ENGL 1103 and 1023 should also take COMM 2103 or 2503.

[*] Transfer students who declare a major and meet the prerequisites will take EGR 215 "Introduction to the Practice of Engineering for Transfer Students" in place of EGR 101 and EGR 103. EGR 215 will fulfill UK Core: Arts & Creativity requirement.

[^] Graduation Composition and Communication Requirement (GCCR) course.

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>First Semester</th>
<th>Hours</th>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 213 Calculus III</td>
<td>4</td>
<td>MA 214 Calculus IV</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CS 216 Intro to Software Eng Techniques</td>
<td>3</td>
<td>CS 270 Systems Programming</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>EE 280 Design of Logic Circuits</td>
<td>3</td>
<td>CS 315 Algorithm Design and Analysis</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>UK Core</td>
<td>3</td>
<td>Science Elective [5]</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

[3] Technical Electives - include any 300-level and above courses in computer science, electrical engineering, mathematics and business and economics. MA 214 is also an acceptable technical elective. Cooperative education credit may be used to satisfy this requirement.

[4] Elective - including one Free Elective and Non-Technical Elective. As least two of the electives (6 credits) cannot be in computer science, mathematics, science or engineering. Free Elective (3 credits) can be any course that carries college credit and is not a more elementary version of a required courses. Note: at least 128 credit hours; a foreign language requirement.

[5] Science elective - must be selected from either UK Core Natural Science or Social Science approved list or by consent of academic advisor.
Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 101 [*]</td>
<td>1</td>
<td>EGR 103 [†]</td>
<td>2</td>
</tr>
<tr>
<td>EGR 102 Elect [‡]</td>
<td>2</td>
<td>CIS/WRD 110 [*]</td>
<td>2</td>
</tr>
<tr>
<td>MA 113[‡]</td>
<td>4</td>
<td>MA 114[‡]</td>
<td>4</td>
</tr>
<tr>
<td>PHY 231[*]</td>
<td>4</td>
<td>CHE 105[*]</td>
<td>4</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Hours</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 213[*]</td>
<td>4</td>
<td>MA 214</td>
<td>3</td>
</tr>
<tr>
<td>PHY 232</td>
<td>4</td>
<td>EE 223</td>
<td>4</td>
</tr>
<tr>
<td>EE 211</td>
<td>4</td>
<td>EE/CPE 287</td>
<td>4</td>
</tr>
<tr>
<td>EE/CPE 282</td>
<td>4</td>
<td>UK Core</td>
<td>3</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 415G</td>
<td>3</td>
<td>EE 468G</td>
<td>4</td>
</tr>
<tr>
<td>EE 421G</td>
<td>3</td>
<td>EE Lab Elective</td>
<td>2</td>
</tr>
<tr>
<td>EE Lab Elective</td>
<td>2</td>
<td>Eng/Sci Elective[‡]</td>
<td>3</td>
</tr>
<tr>
<td>EE 461G</td>
<td>3</td>
<td>Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>MA 320/STA 381</td>
<td>3</td>
<td>UK Core</td>
<td>3</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE/CPE 490 [‡]</td>
<td>3</td>
<td>EE/CPE 491 [‡]</td>
<td>3</td>
</tr>
<tr>
<td>EE Tech Elect 4</td>
<td>3</td>
<td>EE Tech Elect 4</td>
<td>3</td>
</tr>
<tr>
<td>EE Tech Elect 4</td>
<td>3</td>
<td>EE Tech Elect 4</td>
<td>3</td>
</tr>
<tr>
<td>Math/Stat Elective 1</td>
<td>3</td>
<td>Math 3003</td>
<td>3</td>
</tr>
<tr>
<td>UK Core</td>
<td>3</td>
<td>UK Core</td>
<td>3</td>
</tr>
</tbody>
</table>

[*] Courses required for Engineering Standing. A cumulative UK GPA of at least a 2.5 and successful completion of all pre-major courses. Successful completion of the pre-major courses with at least a 2.5 GPA. If a course is repeated the best grade will be used for calculation of GPA in the courses required for Engineering Standing.

[‡] Students who take ENGL 1103 and 1023 should also take COMM 2103 or 2503.

[†] Transfer students who declare a major and meet the prerequisites will take EGR 215 "Introduction to the Practice of Engineering for Transfer Students" in place of EGR 101 and EGR 103. EGR 215 will fulfill UK Core: Arts & Creativity requirement.

[‡] Graduation Composition and Communication Requirement (GCCCR) course.

[1] Math/Statistics Elective: Any upper-division (300-level or higher) math or statistics course excluding MA 308 and MA 310 (3 credit hours total).

[2] Engineering/Science Electives: Any engineering, physics, computer science, or math course at the 200-level or higher, other than an electrical engineering course and excluding MA 308, MA 310, and more elementary versions of required courses (6 credit hours total). Cooperative education credit may not be used to satisfy this requirement.

[3] Technical elective may be selected from upper-division (300-level or higher) engineering, mathematics, statistics, computer science, physics, or other technically-related fields excluding MA 308, MA 310, EE 305 and more elementary versions of required courses, to be selected in consultation with the academic advisor (3 credit hours total). Cooperative education credit may not be used to satisfy this requirement.

[5] EE/CPE 490 is only taught in the fall semester. EE/CPE 491 is only taught in the spring semester.
MATERIALS ENGINEERING

Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 102</td>
<td>2</td>
<td>CHE 200B 111 [a]</td>
<td>2</td>
</tr>
<tr>
<td>CIS/WRD 111 [a]</td>
<td>3</td>
<td>CIS/WRD 110 [a]</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 102</td>
<td>3</td>
<td>ENGL 101</td>
<td>3</td>
</tr>
<tr>
<td>CIS/WRD 110 [a]</td>
<td>3</td>
<td>MA 113[^3]</td>
<td>4</td>
</tr>
<tr>
<td>CIS/WRD 111 [a]</td>
<td>3</td>
<td>CIS/WRD 110 [a]</td>
<td>3</td>
</tr>
<tr>
<td>CIS/WRD 111 [a]</td>
<td>3</td>
<td>MA 114[^1]</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 102</td>
<td>3</td>
<td>ENGL 101</td>
<td>3</td>
</tr>
<tr>
<td>CIS/WRD 110 [a]</td>
<td>3</td>
<td>MA 113[^3]</td>
<td>4</td>
</tr>
<tr>
<td>CIS/WRD 111 [a]</td>
<td>3</td>
<td>CIS/WRD 110 [a]</td>
<td>3</td>
</tr>
<tr>
<td>CIS/WRD 111 [a]</td>
<td>3</td>
<td>MA 114[^1]</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 102</td>
<td>3</td>
<td>ENGL 101</td>
<td>3</td>
</tr>
</tbody>
</table>

[^3] Students who take ENGL 1103 and 1023 should also take COMM 2103 or 2503.

*[^7] Transfer students who declare a major and meet the prerequisites will take EGR 215 "Introduction to the Practice of Engineering for Transfer Students" in place of EGR 101 and EGR 103. EGR 215 will fulfill UK Core: Arts & Creativity requirement.

Sophomore Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIE 201</td>
<td>3</td>
<td>MIE 301</td>
<td>3</td>
</tr>
<tr>
<td>MIE 202</td>
<td>3</td>
<td>MIE 311</td>
<td>3</td>
</tr>
<tr>
<td>CHE 107[^7]</td>
<td>3</td>
<td>PHY 232</td>
<td>4</td>
</tr>
<tr>
<td>CHE 113[^7]</td>
<td>2</td>
<td>CHE 236</td>
<td>3</td>
</tr>
<tr>
<td>EM 261</td>
<td>3</td>
<td>STA 381</td>
<td>3</td>
</tr>
</tbody>
</table>

*[^6] Courses required for Engineering Standing. A cumulative UK GPA of at least 2.5 and successful completion of all pre-major courses. Successful completion of the pre-major courses with at least a 2.5 GPA. If a course is repeated the best grade will be used for calculation of GPA in the courses required for Engineering Standing.

*[^7] Technical Electives - total of 6 credit hours and must be chosen. Technical electives are to be selected from a technical discipline, with approval from the Director of Undergraduate Studies. At least 3 credit hours must come from a course with a MIE prefix. MIE 395 (research) may count for one elective, but not both. Recommended technical electives include but are not limited to:

- MIE 395 Independent Work in Materials Engineering
- MIE 506 Mechanics of Composite Materials
- MIE 531 Powder Metallurgy
- MIE/CME 554 Chemical and Physical Processing of Polymer Systems
- MIE 556 Introduction to Composite Materials
- MIE 569 Electronic Packaging Systems and Manufacturing Processes
- MIE 599 Topics in Materials Science and Engineering (subtitle required)
- CHE 560 Topics in Chemistry
- CME 542 Electric Power Generation Technologies
- MA 322 Matrix Algebra and Its Applications
- MA 422 Numerical Solutions of Equations
- MA 432G Methods of Applied Mathematics I
- ME/MFS 503 Lean Manufacturing Principles and Practices

Junior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIE 400G</td>
<td>3</td>
<td>MIE 402G</td>
<td>3</td>
</tr>
<tr>
<td>MIE 404G</td>
<td>3</td>
<td>MIE 403G</td>
<td>3</td>
</tr>
<tr>
<td>EME 200</td>
<td>3</td>
<td>MIE 407[^7]</td>
<td>3</td>
</tr>
<tr>
<td>EM 302</td>
<td>3</td>
<td>MIE 535</td>
<td>3</td>
</tr>
<tr>
<td>STA 381</td>
<td>3</td>
<td>PHY 361</td>
<td>3</td>
</tr>
<tr>
<td>UK Core</td>
<td>3</td>
<td>STA 381</td>
<td>3</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIE 408</td>
<td>3</td>
<td>MIE 489</td>
<td>3</td>
</tr>
<tr>
<td>MIE 436</td>
<td>3</td>
<td>MIE 538</td>
<td>3</td>
</tr>
</tbody>
</table>

*[^7] Technical Electives - total of 6 credit hours and must be chosen. Technical electives are to be selected from a technical discipline, with approval from the Director of Undergraduate Studies. At least 3 credit hours must come from a course with a MIE prefix. MIE 395 (research) may count for one elective, but not both. Recommended technical electives include but are not limited to:

- MIE 395 Independent Work in Materials Engineering
- MIE 506 Mechanics of Composite Materials
- MIE 531 Powder Metallurgy
- MIE/CME 554 Chemical and Physical Processing of Polymer Systems
- MIE 556 Introduction to Composite Materials
- MIE 569 Electronic Packaging Systems and Manufacturing Processes
- MIE 599 Topics in Materials Science and Engineering (subtitle required)
- CHE 560 Topics in Chemistry
- CME 542 Electric Power Generation Technologies
- MA 322 Matrix Algebra and Its Applications
- MA 422 Numerical Solutions of Equations
- MA 432G Methods of Applied Mathematics I
- ME/MFS 503 Lean Manufacturing Principles and Practices

[^1] Graduation Composition and Communication Requirement (GCCR) course.

[^7] Technical Electives - total of 6 credit hours and must be chosen. Technical electives are to be selected from a technical discipline, with approval from the Director of Undergraduate Studies. At least 3 credit hours must come from a course with a MIE prefix. MIE 395 (research) may count for one elective, but not both. Recommended technical electives include but are not limited to:

- MIE 395 Independent Work in Materials Engineering
- MIE 506 Mechanics of Composite Materials
- MIE 531 Powder Metallurgy
- MIE/CME 554 Chemical and Physical Processing of Polymer Systems
- MIE 556 Introduction to Composite Materials
- MIE 569 Electronic Packaging Systems and Manufacturing Processes
- MIE 599 Topics in Materials Science and Engineering (subtitle required)
- CHE 560 Topics in Chemistry
- CME 542 Electric Power Generation Technologies
- MA 322 Matrix Algebra and Its Applications
- MA 422 Numerical Solutions of Equations
- MA 432G Methods of Applied Mathematics I
- ME/MFS 503 Lean Manufacturing Principles and Practices

Notes

- MIE 400G Metal and Alloys
- MIE 404G Polymeric Materials
- EME 200 Process Principles
- EM 302 Mechanics of Deformable Solids
- STA 381 Engineering Statistics A Concept App

Pathway for Lindsey Wilson College Transfers - Fall 2018
MECHANICAL ENGINEERING

Freshman Year

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 101 [*][#]</td>
<td>1</td>
</tr>
<tr>
<td>EGR 102</td>
<td>2</td>
</tr>
<tr>
<td>CIS/WRD 110 [a]</td>
<td></td>
</tr>
<tr>
<td>MA 113[*]</td>
<td></td>
</tr>
<tr>
<td>PHYS 231[*]</td>
<td></td>
</tr>
<tr>
<td>PHYS 241 [*]</td>
<td></td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 103 [*][#]</td>
<td>2</td>
</tr>
<tr>
<td>CIS/WRD 111 [*]</td>
<td></td>
</tr>
<tr>
<td>MA 114[*]</td>
<td></td>
</tr>
<tr>
<td>CHE 105[*]</td>
<td></td>
</tr>
<tr>
<td>CIS/WRD 111 [a]</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 103</td>
<td></td>
</tr>
<tr>
<td>MA 104[∆]</td>
<td>4</td>
</tr>
<tr>
<td>MATH 2315</td>
<td></td>
</tr>
<tr>
<td>MATH 2325</td>
<td></td>
</tr>
</tbody>
</table>

Sophomore Year

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 213[*]</td>
<td>4</td>
</tr>
<tr>
<td>PHY 232 [*]</td>
<td></td>
</tr>
<tr>
<td>PHY 242 [*]</td>
<td></td>
</tr>
<tr>
<td>EM 221[*]</td>
<td></td>
</tr>
<tr>
<td>ME 205</td>
<td>3</td>
</tr>
<tr>
<td>UK Core</td>
<td></td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 214</td>
<td>3</td>
</tr>
<tr>
<td>ME 220</td>
<td></td>
</tr>
<tr>
<td>ME 251</td>
<td></td>
</tr>
<tr>
<td>ME 235</td>
<td></td>
</tr>
<tr>
<td>ME 242</td>
<td></td>
</tr>
<tr>
<td>ENGL 1023</td>
<td>3</td>
</tr>
<tr>
<td>MA 313</td>
<td></td>
</tr>
<tr>
<td>CHE 107</td>
<td>3</td>
</tr>
</tbody>
</table>

Junior Year

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM 302</td>
<td>3</td>
</tr>
<tr>
<td>EE 305</td>
<td></td>
</tr>
<tr>
<td>ME 330</td>
<td>3</td>
</tr>
<tr>
<td>ME 340</td>
<td>3</td>
</tr>
<tr>
<td>WRD 204 [*]</td>
<td>3</td>
</tr>
<tr>
<td>Technical Writing</td>
<td></td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 310</td>
<td>3</td>
</tr>
<tr>
<td>ME 321</td>
<td></td>
</tr>
<tr>
<td>ME 325</td>
<td></td>
</tr>
<tr>
<td>ME 344</td>
<td></td>
</tr>
<tr>
<td>Math Elective [2]</td>
<td>3</td>
</tr>
</tbody>
</table>

Senior Year

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 411</td>
<td>3</td>
</tr>
<tr>
<td>ME Capstone Design I</td>
<td>3</td>
</tr>
<tr>
<td>ME 440</td>
<td>3</td>
</tr>
<tr>
<td>ME 501</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elect [1]</td>
<td>3</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 412</td>
<td>3</td>
</tr>
<tr>
<td>ME Capstone Design II</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elect [1]</td>
<td>3</td>
</tr>
<tr>
<td>UK Core</td>
<td>3</td>
</tr>
</tbody>
</table>

[*] Courses required for Engineering Standing. A cumulative UK GPA of at least 2.5 and successful completion of all pre-major courses. Successful completion of pre-major courses with at least a 2.5 GPA and a C or better in each course. If a course is repeated, the best grade will be used for calculation of GPA in the courses required for Engineering Standing.

[∆] Students who take ENGL 1103 and 1023 should also take COMM 2103 or 2503.

[#] Transfer students who declare a major and meet the prerequisites will take EGR 215 "Introduction to the Practice of Engineering for Transfer Students" in place of EGR 101 and EGR 103. EGR 215 will fulfill UK Core: Arts & Creativity requirement.

[1] Graduation Composition and Communication Requirement (GCCR) course.

[2] Technical Electives - Choose 9 hours from the following:

- ME 380 Topics in Mechanical Engineering (variable topics)
- ME 385 Independent Work in Mechanical Engineering
- ME 503 Lean Manufacturing Principles and Practices
- ME 505 Modeling of Manufacturing Process and Machines
- ME 506 Mechanics of Composite Materials
- ME 507 Design for Manufacturing
- ME 510 Vibro-Acoustic Design in Mechanical Systems
- ME 512 Manufacturing Systems
- ME 513 Mechanical Vibrations
- ME 514 Computational Techniques in Mechanical System Analysis
- ME 515 Rotordynamics of Turbomachinery
- ME 516 Systems Engineering
- ME 527 Applied Mathematics in the Natural Sciences I
- ME 530 Gas Dynamics
- ME 531 Fluid Dynamics I

[2] Mathematics Elective:

- MA 320 Introductory Probability
- MA 321 Introduction to Numerical Methods
- MA 322 Matrix Algebra and its Applications
- MA 416G Introduction to Optimization

- MA 320 Introductory Probability
- MA 321 Introduction to Numerical Methods
- MA 322 Matrix Algebra and Its Applications
- MA 416G Introduction to Optimization

- MA 432G Methods of Applied Mathematics I
- MA 433G Introduction to Complex Variables
- MA 4810 Differential Equations
- STA 381 Engineering Statistics - A Conceptual Approach
MINING ENGINEERING

Freshman Year

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 101</td>
<td>Engineering Exploration</td>
<td>1</td>
</tr>
<tr>
<td>EGR 102</td>
<td>Fundamentals of Engin Computing</td>
<td>2</td>
</tr>
<tr>
<td>CHEWRD 110 [*] [a]</td>
<td>Comp & Core</td>
<td>3</td>
</tr>
<tr>
<td>MA 113 [*]</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>CHE 105 [*]</td>
<td>General College Chemistry I</td>
<td>4</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 103 [*]</td>
<td>Engineering Exploration II</td>
<td>2</td>
</tr>
<tr>
<td>COMP/WRD 111 [a]</td>
<td>Comp & Core II</td>
<td>3</td>
</tr>
<tr>
<td>MA 114 [*]</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PHY 231 [*]</td>
<td>General University Physics I</td>
<td>4</td>
</tr>
<tr>
<td>CHE 111</td>
<td>Gen Col Chemistry I Lab</td>
<td>1</td>
</tr>
</tbody>
</table>

UK Core

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS/WRD 111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL 102</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MA 114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 271</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>ENGL 101</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MA 113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 232</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>ENGL 110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 121</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Sophomore Year

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EES 220</td>
<td>Principles of Physical Geology</td>
<td>4</td>
</tr>
<tr>
<td>EM 221</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>MA 213 [*]</td>
<td>Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>MNG 201</td>
<td>Mining Engineering Fundamentals</td>
<td>3</td>
</tr>
<tr>
<td>PHY 232</td>
<td>General University Physics</td>
<td>4</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EES 230</td>
<td>Fundamentals for Geology I</td>
<td>3</td>
</tr>
<tr>
<td>EM 302</td>
<td>Mechanics of Deformable Solids</td>
<td>3</td>
</tr>
<tr>
<td>MA 214</td>
<td>Calculus IV</td>
<td>3</td>
</tr>
<tr>
<td>MNG 291</td>
<td>Elements of Mine Design</td>
<td>3</td>
</tr>
<tr>
<td>MNG 303</td>
<td>Deformable Solids Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>MNG 391</td>
<td>Explosives and Blasting</td>
<td>2</td>
</tr>
</tbody>
</table>

Junior Year

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 311 [*]</td>
<td>Intro to Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>MNG 211</td>
<td>Mine Surveying</td>
<td>2</td>
</tr>
<tr>
<td>MNG 301</td>
<td>Minerals Processing</td>
<td>3</td>
</tr>
<tr>
<td>MNG 335 [*]</td>
<td>Intro to Mine Systems Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MNG 351</td>
<td>Underground Mine Design</td>
<td>3</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNG 311</td>
<td>Electrical Circuits & Mining Machinery</td>
<td>3</td>
</tr>
<tr>
<td>MNG 322</td>
<td>Mine Safety & Health Manage & Process</td>
<td>2</td>
</tr>
<tr>
<td>MNG 371 [*]</td>
<td>Prof Development of Mining Engineers</td>
<td>3</td>
</tr>
<tr>
<td>MNG 435</td>
<td>Mine Systems Engr and Economics</td>
<td>4</td>
</tr>
<tr>
<td>MNG 463</td>
<td>Surface Mine Design</td>
<td>3</td>
</tr>
<tr>
<td>Min Pro Tech Elect[*]</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Senior Year

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM 333</td>
<td>Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>MNG 332</td>
<td>Mine Plant Machinery</td>
<td>3</td>
</tr>
<tr>
<td>MNG 341</td>
<td>Mine Ventilation</td>
<td>3</td>
</tr>
<tr>
<td>MNG 551</td>
<td>Rock Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>MNG 564</td>
<td>Environ Cont Syt Desgn & Reclama</td>
<td>3</td>
</tr>
<tr>
<td>MNG 591</td>
<td>Mine Design Project I</td>
<td>1</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNG 592</td>
<td>Mine Design Project II</td>
<td>3</td>
</tr>
<tr>
<td>UK Core</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>UK Core</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

[*] Courses required for Engineering Standing. A cumulative UK GPA of at least a 2.5 and successful completion of all pre-major courses with at least a 2.5 GPA. If a course is repeated, the best grade will be used for calculation of GPA in the pre-major courses.

[a] Students who take ENGL 1103 and 1023 should also take COMM 2103 or 2503.

[b] Transfer students who declare a major and meet the prerequisites will take EGR 215 "Introduction to the Practice of Engineering for Transfer Students" in place of EGR 101 and EGR 103. EGR 215 will fulfill UK Core: Arts & Creativity requirement

[*] Graduation Composition and Communication Requirement (GCCCR) course.

[c] Offered only in the Spring semester for Mining students.

[1] Mineral Processing Technical Elective is to be chosen between MNG 575 Coal Preparation Design and MNG 580 Mineral Processing Plant Design.

[2] MNG 335 satisfies the Statistical Inferential Reasoning requirement in the UK Core.

[3] Technical Electives: These courses must be chosen with the approval of the student’s advisor to ensure that the curriculum includes sufficient engineering design content. Students are required to select their technical elective from the departmental courses listed below:

- MNG 511 Mine Power System Design
- MNG 531 Advanced Blast Design and Technology
- MNG 541 Computer Design of Mine Ventilation Systems
- MNG 561 Mine Construction Engineering I
- MNG 575 Coal Preparation Design
- MNG 580 Mineral Processing Plant Design
- MNG 599 Topic in Mining Engineering

Pathway for Lindsey Wilson College Transfers - Fall 2018