Trickle Irrigation Design for Blueberries

Dr. Richard C. Warner
Dr. Carmen T. Agouridis
Dr. John Strang
Mr. Otto Hoffmann

2008 Kentucky Fruit and Vegetable Conference

January 8, 2008

Blueberries with Drip Irrigation

Irrigation

- Soil should be damp but not wet
- ½"/day
- Insufficient moisture will reduce the bud formation for next year's crop
- Drip irrigation with point source emitters

Site Development

- Rows in a North-South direction
- Raised bed (6-8 inches high) prior to planting.
- Recommend 9-14' (12') between rows and 4-6' (5') between plants.
 - a 5' by 12' spacing was used for the ½ ac and
 4 ac irrigation designs

Site Development

- Raised beds
 - Better drainage
 - Roots develop above compacted wet zones

UK

Prior to Planting

- High organic matter soils.
- Distribute peat or composted pine bark down row
- Do not substitute sawdust, hay or compost as this will stunt or slowly kill your plants.
 - Incorporate peat with soil
 - Peat tilled uniformly into entire her!
- Dig a deep hole
 - 24" wide x 18" deep
 - Mix 1 gal peat in bottom of hole with soil

Planting

- Plant in late fall or early spring
- Set plants at the same depth that they grew in the nursery and firm soil around the roots.
- Set plants ~ 2 to 3 inches above level ground to enhance drainage
- Water plants to settle soil around the root system.

Mulching

- Apply to a depth of 4-6 inches and reapplied when it rots to a depth of 3 inches.
- Remulching is necessary every year or two.
- Blueberry roots grow at the mulch/soil interface and if the mulch decomposes too much and is not replaced the roots will be exposed.
- Mulch is applied in a 3-4' wide band down the row.

Mulching

- Moderates soil temperature,
- Conserves moisture,
- Releases nutrients,
- Helps with weed control.
- Use
 - woodchips,
 - sawdust,
 - pine needles,
 - straw

BIOSYSTEMS & AGRICULTURAL ENGINEERING

Laurel Fork

BIOSYSTEMS & AGRICULTURAL ENGINEERING

Simple Designs

- Home water supply
 - outdoor faucet for ½ ac plot
 - 5/8-in water meter for up to 4 ac
- Pond water supply

Advantages

- Simple to install
- Simple to operate
- Ability to automate
 - Reduce operation man-hours
 - Employ "pulse drip irrigation"
 - Decrease water usage
 - Potential increase in yield

Half Acre Blueberry Drip Irrigation System

Overall schematic

Near Faucet Components

To 3/4" PE or 3/4 hose

Overall schematic

Near Plot Components

Drip Lines for ½ acre

360'

Near Plot

Components

Operating Time

- ½" water/day (maximum*)
- 3 gal/day/plant (5 ft plant spacing)
- 1 gal/hr emitter 3 hours
- Options
 - 2 times per day for 1 ½ hour
 - 3 times per day for 1 hour
 - 6 times per day for ½ hour
 - 12 times per day for 15 min (pulse irrigation)
- *Note these are expected to be the maximum irrigation rates during critical growing conditions

Maximum Water Usage 1/2 Ac Plot

- 1/4 in/day max. application rate
- ~ 1,300 gal/day

4 Acre Blueberry Drip Irrigation System

House Water supply

- 5/8" water meter (15 gpm)
- Connect to water line (usually 3/4" copper)
- Use 1" PVC or PE for main line (15 gpm)
 - lose ~ 5 psi/100 ft
 - depending on pressure at the house (usually 60 to 90 psi) restrict house to plot distance to ~ 400 ft)

Pond Water Supply

- ~ ½ BHP electric pump
- 1 ½" to 1 ½" main pipe (@14.4 gpm)
 - 1 1/4 " PVC Sch. 40 pipe ~ 1.5 psi loss/100 ft
 - 1 1/2" PVC Sch. 40 pipe ~ 3/4 psi loss/100 ft
- OR
- ¾ BHP electric pump
- 1 " PVC or PE pipe (~5 psi loss/100ft @ 14.4 gpm)

4 Acre Drip Irrigation System

Four station controller (optional)

1" PVC Schedule 40 pipe 1" 150 mesh screen filter

3/4" x 1" T reducer

½ acre drip line

25 psi pressure reducer

To ½ acre drip line system

1/2 acre drip line

1/2 acre drip line

½ acre drip line

1/2 acre drip line

BIOSYSTEMS & AGRICULT RAL ENGINEERING

½ acre drip line

½ acre drip line

Drip Lines for ½ acre

near plot

components

Automation Components

- Irrigation controller
- Solenoid valves and valve box
- Direct burial underground wire and waterproof connector
- Pump start-switch (if pump used)
- Electricity

Irrigation Controller

- Brain of the irrigation system
- Tells each valve
 - when to come on
 - how long to run
- In a nutshell
 - sophisticated clock
- Reduces voltage from 120V to 24V

How a Controller Works

- Sends an electric signal to the valve in each zone
- Solenoid valve receives the signal and tells valve to open
- Following scheduled duration of operation, controller sends another signal
- Solenoid valve turns off
- Proceed to next irrigation zone

System Layout

Programmed Information

- Set of watering instruction
 - Watering days
 - Time of day to start
 - Sequence of operation (zone 1, 2, ... 12)
 - Length of time in each zone
 - Multiple start times per day
 - Run times from 1 to 60 minutes (alternatively, 0.5 to 18 hours)
 - Activates pump

Solid-state Controller

Solenoid Valve

UK

Pressure Loss – 1"

GPM	Solenoid Valves	
	Globe	Angle
10	1.9	1.0
20	3.3	2.0
30	6.1	3.0

UK

Valve Boxes

BIOSYSTEMS & AGRICULTURAL ENGINEERING

Type of Wire

- Direct burial wire (identified as UV wire)
- Must carry 24V to 30V
 - Safety
 - Controller (transformer) reduces 120V to 24V
- Plastic coated
- Solid copper
- Single or multi-strand
- Multiple colors (white for common wire)

Wire Sizing

 Distance between controller and valve

Only good if common and control wires are same gauge

Gauge	Allowable Distance (ft)
18	3,000
16	4,800
14	7,700

Wire Layout

Wire Connectors

- Caution! Placing electric tape around a wire nut will <u>NOT</u> provide a waterproof seal!
- Two basic types of wire connectors
 - Wire nut with self-contained epoxy seal
 - Wire nut without self-contained epoxy seal (user must add epoxy)

Irrigation Scheduling

- Traditionally, ½ hours to 3 hours per zone
- Problem
 - Field observations show some of the irrigation water infiltrates below root depth if watering last more than 20 minutes
 - Due to macropores (cracks in soil from decayed roots, worm holes, etc.)
 - Macropores enable water to quickly infiltrate to depths of 1 ft to 3 ft (or greater)

Pulse Irrigation

- Ideal when used with an Automatic
 Irrigation System
- Water is applied for 15 minutes at a time
- Water is applied many times throughout the day
- Benefits
 - Reduce water usage
 - Reduce loss of fertilizer
 - Potentially increase yield

Questions?

