EE 599/MFS 599 – APPLIED CONTROL

Spring 2001

INSTRUCTORS:
YuMing Zhang
210E CRMS 257-6262 Ext. 223
Email: ymzhang@engr.uky.edu

Bruce Walcott
312 CRMS 257-8827
Email: walcott@engr.uky.edu

Larry Holloway
414F CRMS 257-6262 Ext. 203
Email: holloway@engr.uky.edu

OFFICE HOURS:
Dr. Zhang: 2-4 p.m. M-F
Dr. Walcott 3-4 p.m. MW
Dr. Holloway: 10-12 MWF

PREREQUISITES: EE422G or EE571.

REFERENCES:

COURSE WEBSITE:
http://www.engr.uky.edu/~ymzhang/AppliedControl/AppliedControl.html
http://www.engr.uky.edu/~holloway/AppliedControl

GRADING:

<table>
<thead>
<tr>
<th>Component</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>HW</td>
<td>30 pts</td>
</tr>
<tr>
<td>Projects</td>
<td>45 pts</td>
</tr>
<tr>
<td>Test 1</td>
<td>25 pts</td>
</tr>
<tr>
<td>Test 2</td>
<td>25 pts</td>
</tr>
<tr>
<td>Final Exam. (Test 3)</td>
<td>25 pts</td>
</tr>
</tbody>
</table>

Total………. 150 pts.

TEST ATTENDANCE:

Failure to take a test or the final exam during the assigned class period will result in a grade of zero being recorded for that test unless the student has personally contacted me PRIOR to the test and has received permission to take the test at an alternative time.
CLASS ATTENDANCE:

Students will be responsible for ALL business conducted during scheduled class periods, including any announcements which might be made.

TENTATIVE PLAN

0. Introduction
 Lecture: 1/11/01

1. Identification and PID Controller Design: frequency sampling filters (FSF) based dynamical models; new frequency domain PID controller design method; tuning rules for PID controller. Lecture: 1/16/01-2/13/01, Test: 2/15/01

2. Fuzzy Control: Fuzzy Sets and basic operations on fuzzy sets, axiomatic fuzzy set theory, relations/extension principle, linguistics/fuzzy IF-THEN rules, fuzzy logic and approximate reasoning, fuzzy inference engine, fuzzifiers and defuzzifiers, control applications of Fuzzy Logic Lecture: 2/20/01-3/22/01, Test: 3/29/01

3. Discrete Controller Design: Discrete Control Models – event based and state based, Programmable Logic Controllers, Relay Ladder Diagrams, Grafcet/Sequential Function Charts, synthesis of logic from models, hybrid control systems, gain scheduling methods Lecture: 4/1/01-4/26/01, Final Exam.: 8:00 a.m., 5/1/01

Project 1 (30 pts): Development of Temperature Control System (Proposal due 2/9/01, Hardware System due 3/9/01, Identification Result due 3/30/00, Closed-loop System and Final Report due: 4/20/01)

Project 2 (15 pts): Development and Demonstration of Discrete Logic Control on PLC (due 4/27/01)

ABET LEARNING OUTCOMES:

Upon completion of this course students should be able to:

1. Understand the basic procedure for the development of closed-loop control systems.
2. Establish the dynamic models for the underlying industrial and manufacturing processes.
3. Design practical PID control systems for industrial and manufacturing dynamic processes.
4. Define control problems from industrial and manufacturing applications and then establish the corresponding control systems, including hardware and software.
5. Understand Basic Principles of Fuzzy Sets and Fuzzy Logic and apply Fuzzy Logic to a variety of control problems
6. Develop and demonstrate discrete control logic in relay ladder logic and sequential function charts.
7. Perform basic analysis of hybrid control systems incorporating continuous and discrete control.