MFS605/EE605
Systems for Factory Information and Control

Fall 2004

Larry Holloway
Dept. of Electrical Engineering and
Center for Robotics and Manufacturing Systems

• Collect info on name, major, MS/PhD, email
Overview

• **Systems for Factory Information and Control:**

• **Systems:** High-level / abstract view.
• We will:
 – view mfg. as interacting equipment and people
 – examine how to model, analyze, predict, control
 – examine how elements of a manufacturing system
 • interact
 • coordinate
 • communicate

• We will not:
 – consider details of individual machines or processes

Topics

• Introductory Material 1 week
• Mfg Systems: 6 weeks
 – Deterministic Analysis
 – Queuing Analysis
 – Simulation Analysis
• Equipment Control 3 weeks
 – PLCs, Ladder Logic, SFC
• Production and Inventory Control: 2 weeks
 – MRP, JIT/Kanban, OPT
• Communication and Info Topics 1 week
• Student Presentations 1 week
• Total: 14 weeks
Goals for Class

1. Introductory understanding of current issues/methods/technologies
 - wide range of topics
 - mostly emphasis on working familiarity
 - other classes give more depth:
 • production control, simulation, networks, queuing

2. Learn to think critically about material
 - What are pro’s and cons of methods?
 - What would you do better?

Projects:

Semester Project (15%):
 - Report (and possibly oral presentation)
 - Explore in depth some topic relevant to class
 - Examples:
 • Survey literature or methods in depth
 • Do analysis or empirical study
 • Explore alternatives

• Simulation Project (15%):
 - Model, analyze, and simulate system
 - Explore alternatives

• PLC Project (10%)
 - Program and demonstrate a manufacturing control system
Other Grades

- Homeworks (20%) (planned for 6 homeworks)
 - Demonstrate understanding of material
 - May include mini-projects

- Independent Readings (15%):
 - 3 due over semester
 - Find an article relevant to course material
 - Write a brief summary and critique of the article

- Quizzes (10% each – 30% total):
 - 3 quizzes -- (not a full class period)
 - brief quizzes over material covered in class and on homeworks

Types of Manufacturing

- Discrete Manufacturing
 - Parts industries
 - Discrete parts and discrete steps
 - Examples:

- Continuous Manufacturing
 - Process industries
 - Continuous flow of product
 - Examples:
Discrete Manufacturing

• Structure issue:
 – Layout
 – Product flow
 – Resources: people and equipment
 – Capacity

• High-level control issue:
 – What to make, when, how much
 – Job sequencing
 – Managing the needed materials and resources

• Low-level control issue:
 – Low-level sequencing of steps
 – Actuation and sensing

Classification of Discrete Manufacturing

• Mass Production
• Batch Production
• Job Shop
Traditional Classification

- Mass Production:
 - “hard automation”, “Detroit-style automation”
 - low variety, high volume
 - requires specialized equipment, low labor skills
 - low cost production (relatively)

- Batch production:
 - general purpose equipment
 - mid volume

- Job-Shop:
 - low volume (even one-of-a-kind), high variety
 - general purpose equipment, versatile labor

Complexity of control:

Control of production, inventory, equipment

- Mass production: relatively simple
 - make one product, sequence through dedicated equipment

- Batch production:
 - how do we manage use of multiple products and orders flowing through system?
 - How to route materials, product, people?
 - Common problems: high WIP, long lead times

- Job-shop:
 - even more challenging
Changing Marketplace

- Global marketplace requires:
 - more variety of features
 - regional customization, niche customization
 - Examples: Sony—30,000 watches, Phillips > 800 TVs
 - new products faster
 - technology races
 - responses to opportunities, changing tastes
 - quality
 - example: automobiles
 - quality threshold rises
 - value ($$)

- Market requirement: “produce a wide variety of products in a short time with little waste”
 - Requires rethinking of conventional mfg. wisdoms

Productivity Paradox

- Conventional wisdom: The need to cut costs conflicts with need to stay flexible (productivity paradox)
 - More efficiency means more standardization
 - fewer model changes
 - fewer number of models

- Issue: flexible equipment and methods eat away at this wisdom
Responsiveness

- Faster development of designs for changing markets
- Customization of product for increasingly fragmented markets
- Faster introduction of product to market
- Faster fulfillment of orders

• Responsiveness is powerful business tool:
 - example: Trane Corp.
 - Order used to take 30 shifts, now takes 10 hours
 - Premium can be charged for improved response time
 - example: High-tech:
 - new display technologies, new PCs, new disks, etc.
 - Almost no market for same product produced 5 years ago

Problem: mass production isn’t responsive
 - specialized equipment
Problem: job shop is responsive, but only suitable for low volume
Ideal:
 - flexibility of job shop
 - efficiencies of mass production
 - responsiveness to market
How will we achieve better responsiveness?

- How will we get improved responsiveness and variety with reasonable efficiencies?
 - Improved Organization and Control?
 - Layout
 - Organization
 - Production Control
 - Improved coordination?
 - Information technologies - ?
 - Automation?
 - Flexible manufacturing systems (FMS) - ?
 - Computer Integrated Manufacturing (CIM) - ?

Outline Revisited – what we have seen so far

Outline
- Classification of manufacturing:
 - Discrete vs. continuous
 - Mass vs. batch vs. job shop
 - Issues of control, inventory, complexity
- Market demands in manufacturing
 - Cost
 - Quality
 - Responsiveness
 - Variety
 - Tradeoffs among these
- Next – How does the design of a manufacturing system affect these?
Manufacturing as a system

- Cost
- Quality
- Throughput rate
- Lead Time (throughput time)

Demand, Orders → material, machine, man → Product

Manufacturing Terminology

- Basic Terms:
 - Lead time, Throughput rate, WIP, Availability…
 - Bottlenecks, Capacity…

- Layout Classifications
 - Product
 - Process
 - Group Techn.
 - Fixed-position
Manufacturing Lead Time

Manufacturing Lead Time – also called throughput time

- Average total time a product takes to go through our manufacturing system.
- This is the average time from release of a job at the beginning of a routing until it reaches the end.

- Includes:
 - Time in operations
 - Time waiting in Queues
 - Times in non-value operations…

Are non-operation times significant?

- Figures are from late 70’s, but still true in many companies today.
- One of the challenges in manufacturing is to reduce this non-value-added time.
Capacity and Throughput Rate

- **Capacity**: The maximum rate of output that a manufacturing system is able to produce.
 - Example: parts/day, parts/hour, ...

- **Throughput or Throughput rate**: The avg. output of a process per unit time. *Capacity* is the upper limit of this.

- **Utilization (%)** = \(\frac{\text{Throughput rate}}{\text{Capacity}} \)

Utilization of machine vs of system...

Question: Why isn’t Utilization always 100%???

Example

- A machine can make 10 units per hour. A typical week at this plant has 37 hours of production time. During a typical week, the machine produces 300 good parts.

 - What is the production capacity?

 - What is the throughput rate?

 - What is the utilization?
Bottlenecks

- **Bottleneck**: The portion of the system that constrains capacity for the system (least long term capacity).

- What is the system capacity?

- (Additional Terms: Blocking and Starvation)

Manufacturing Availability

- Availability indicates the percent of time that a machine is expected to be available for use.

- MTBF = Mean Time Between Failures = average time between breakdowns
- MTTR = Mean Time to Repair = how long before equipment is repaired and back in service

\[
\text{Availability} = \frac{\text{MTBF} - \text{MTTR}}{\text{MTBF}} = \frac{E(\text{uptime})}{E(\text{uptime}) + E(\text{downtime})}
\]

- Example: On average, Machine A operates for 10 hours and is then down for 15 minutes.
 \[\text{Availability} = (10.25 - .25)/10.25 = 97.5\%\]
- Example: Machine B operates for 100 hours before being down for 2.5 hours for repair.
 \[\text{Availability} = (102.5-2.5)/102.5 = 97.5\%\]

What is missing here?
Work In Process

- **Work in process:** Inventory between the start and end points of a process.
 - Includes material in stations and between stations
 - Excludes raw material and finished goods inventory

![Diagram of process flow with stations M1, M2, M3]

- **Need for some WIP:**
 - Parts being processed on machines
 - “Buffer” (isolate) machine interactions
 - Starvation
 - Blocking
 - (more discussion in later class)

Problems with WIP

- **Problems with too much WIP**
 - Ties up capital
 - Long manufacturing lead times (discussed later)
 - Feedback delays
 - Quality issues
 - Example: (Drilled electronic boards)
 - Potential obsolescence
 - Spoilage
 - Example: (Primed engine brackets)

Hinders Responsiveness
Adds Waste
Law 1. Little’s Law:
WIP = Production Rate x Manufacturing Lead Time

Example:
- Production rate is 8 parts/hr. It takes 15 hours (avg.) for part to come through. The avg. WIP is $8 \times 15 = 120$ parts.

Another Example:
- Production rate is 8 parts/hr. It takes 15 hours (avg.) for part to come through. What is the average WIP?
 - The avg. WIP is $8 \times 15 = 120$ parts.
- Production rate is 10 parts/hr. The system has 300 parts in WIP. What is the lead time for a part?
 - Lead time = WIP/Rate = $300/(10/hr) = 30$ hours.
Implication of Little’s Law

\[\text{WIP} = \text{Production Rate} \times \text{Manufacturing Lead Time} \]

Implications:
- If not near capacity, then increasing WIP increases rate without time increase. (Everything keeps busy).
- If near capacity, then rate cannot increase more – so increasing WIP increases throughput time!

Critical WIP

- **Bottleneck**: constrains capacity for the system (least long term capacity). Let its rate be \(r_b \).

- **Raw Process Time**: \(T_0 \): Sum of average process times of workstations along the line. (Note: this excludes the queue time). This is theoretical minimum Mfg. Lead Time.

- **Critical WIP**: \(W_0 \): WIP s. t. when no variability, we have maximum throughput (\(r_b \)) with minimum time (\(T_0 \))

\[W_0 = r_b \times T_0 \]

Example (cont.) Suppose M1 takes 7.5 minutes (8 parts/hour), M2 takes 3 minutes, and M3 takes 4.5 minutes. Then, Raw Process Time is 15 minutes.

Critical WIP = \(8 \times (15/60) = 2 \) parts
(why does this make sense??)
Law 2: Matter is conserved.

- Over time, input must equal output. Otherwise material accumulates, and system is unstable.
- Cannot push material through faster than the slowest process.

3. The Larger the System Scope, the Less Reliable the System.

Suppose each subsystem is available 90%.
If 2 components, then $90\%^2 = 81\%$ system availability.

\Rightarrow To keep the 90% overall, the individual systems would need to be 95% available ---- so doubling system size meant halving downtime of each component!

If 10 components, then $90\%^{10} = 35\%$ system availability.

Suppose each subsystem is available 99%.
If 10 components, then $99\%^{10} = 90\%$ availability
If 100 components, then $99\%^{100} = 37\%$

4. Objects Decay
- Systems do wear, become obsolete, or become unworkable, (even the latest and greatest technologies).
Basic Laws of Manufacturing Systems
(Askin, Standridge 1993)

Law 4: Objects Decay
- Systems do wear, become obsolete, or become unworkable, (even the latest and greatest technologies).

Law 5: Exponential Growth in Complexity
Complexity grows faster than simple rate

Example: 4-state systems.
If we have 5 working together, then we have $4^5 = 1024$ states

Law 8: Limits of Rationality
- People have limits to the amount of complexity they can handle

Problems with Complexity

- Problems with Complexity:
 - Difficulty in maintaining and managing complexity
 - Decreased Reliability
 - “If you can’t make a simple machine work, then you can’t make a more complex one work.
 - -- Throwing technology at problems without understanding them first may be a costly mistake.
Law 6: Technology Advances
- We must continually improve and adapt

Law 7: System Components Appear to Behave Randomly
- Random times, Random failures, ...
- In this class, we will study both deterministic and random models of systems.
 - Random includes: Queueing analysis and simulations

Law 9: Combining, Simplifying, and Eliminating Save Time, Money, and Energy
- Many advantages of lean mfg. are due to simplifying approach.
- Problem: Current technology approaches (CIM) sometimes represent a battle against these laws.
Manufacturing Terminology

- Basic Terms:
 - Throughput, WIP, Availability...
 - Bottlenecks, Capacity...

- Layout Classifications
 - Product
 - Process
 - Group Techn.
 - Fixed-position

Layout

Mixture of variety and volume may influence layout

- Process Layout:
 - each part has unique routing
 - floor divided into functional areas

- Problem: Large transportation and handling times
- Appropriate only if variety so large that there is little commonality between parts flows (job shop).
Product Layout / Flow Lines:

- all parts follow same path
- appropriate for mass production, low variety

- Effects on inventory, time, ...

Group Technology Layout:

- Different workcells for different parts with common routings
- Issues: Which parts to group?
General Characteristics of Layout Types

(Askin, Standridge 1993)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Product</th>
<th>Process</th>
<th>Group</th>
<th>Fixed Pos.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throughput time</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>Medium</td>
</tr>
<tr>
<td>WIP</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>Medium</td>
</tr>
<tr>
<td>Skill level</td>
<td>Choice</td>
<td>High</td>
<td>Med. High</td>
<td>Mixed</td>
</tr>
<tr>
<td>Product Flexibility</td>
<td>Low</td>
<td>High</td>
<td>Med. High</td>
<td>High</td>
</tr>
<tr>
<td>Demand Flexibility</td>
<td>Medium</td>
<td>High</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Machine Utilization</td>
<td>High</td>
<td>Med-low</td>
<td>Med-High</td>
<td>Medium</td>
</tr>
<tr>
<td>Worker Utilization</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>Unit cost</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>High</td>
</tr>
</tbody>
</table>

Outline

- Classification of manufacturing:
 - Discrete vs. continuous
 - Mass vs. batch vs. job shop
 - Issues of control, inventory, complexity
- Market demands in manufacturing
 - Cost
 - Quality
 - Responsiveness
 - Variety
 - Tradeoffs among these
- Manufacturing Terminology
 - WIP, Bottlenecks, Throughput rate, lead time,
- Relationship between WIP, Rate, Time
- Basic laws/principals to consider
- Layout basics: product, process, group technology