AGENDA (9/01)
- REMINDER: HOMEWORK DUE TODAY
- REMINDER: NEW HOMEWORK ON WEB (DUE 9/8)
- PARTICIPATION BONUS
- RECAP
- BAKER CH3: METAL LAYERS
 • BOND PADS, E-TEST PADS
 • DRC RULES
 • CROSS SECTION WITH METAL
- QUIZ

AGENDA (9/06)
- ACTIVE LAYERS
- ESD
- RESISTORS & CAPACITORS

AGENDA (9/08)
- LAYOUT → CROSS-SECTION PRACTICE
- MOSFET OPERATION
RE-CAP (8/30)

- $R = R_{SH} \times \#\,\text{SQUARES}, \quad \#\,\text{SQ} = L/W, \text{ FOR ANY LAYER}$
- JUNCTION CAPACITANCE
 - CAP VS. VOLTAGE
- TRADEOFF OF THICKER METAL VS. THINNER METAL
- MIN FEATURE SIZE

OTHER POST-CLASS QUESTIONS ASKED

- HOW DO YOU MAKE TRANSISTORS FASTER?
- WHAT’S A SCANNER?
- WHAT DOES RAM STAND FOR IN CY TECHS?
- WHAT’S FOX?
Chapter 3

- The Metal Layers
 - Bond Pad
 - Design and Layout
 - Parasitics
 - DRC
 - Cross Talk, Ground Bounce
PAD INTERFACE TO OUTSIDE WORLD

- BOND PAD → PRODUCT

Figure 4.20 Layout of a padframe using pads with ESD diodes.

- ADVANTAGE OF SMALLER PADS?
PAD INTERFACE TO OUTSIDE WORLD

- E-TEST PAD \(\rightarrow \) DEVICE CHARACTERIZATION
Bond Pad

- **DESCRIPTION**
 - INTERFACE: CHIP TO WORLD
 - ESD PROTECTION
 - NECESSARY
 - MORE DETAILS LATER
 - NO DEVICES UNDER PAD
 - SIZE DEPENDS ON USAGE
 - BOND PAD
 - SIZE SET BY WIRE PROCESS
 - ETEST PAD
 - SIZE SET BY PROBE CARD
 - MICRO PAD
 - SIZE SET BY MICRO-TIP
 - SIZE NOT SHRINK W/POLY SHRINK
 - LOCATION
 - BOND PAD
 - TOP METAL LAYER
 - ETEST PAD
 - ALL ROUTING LAYERS
 - MICRO PAD
 - ANY ROUTING LAYER
 - PASSIVATION
 - MUST REMOVE TO PROBE
 - PAD.DG LAYER USED FOR MASK

WHAT'S MISSING?
Design and Layout

- **DESCRIPTION**
 - CONNECTIVITY
 - METAL1 \rightarrow VIA1 \rightarrow METAL2
 - RULES
 - VIA1 MUST BE ENCLOSED BY
 - METAL1
 - METAL2
 - VIA1 IS ONE FIXED W/L
 - CONNECTIVITY
 - METAL1 \rightarrow VIA1 \rightarrow METAL2
 - NWELL IS NOT CONNECTED
 - HOW TO CONNECT TO NWELL?
 - CAN / SHOULD HAVE MANY VIAS
 - HOW MANY VIAS IN A DESIGN?

Figure 3.4 Layout and cross-sectional views.

Figure 3.5 An example layout and cross-sectional view using including the n-well.

Figure 3.15 The schematics of the contact resistances for the layouts in Fig. 3.14.
Parasitics

- **DESCRIPTION**
 - SEPARATE DEVICE FROM OTHER
 - WHAT DEVICES ARE HERE?
 - WHAT “OTHER” IS HERE?

- **RESISTANCE**
 - METAL SHEET RHO
 - WHAT ARE UNITS OF SHEET RHO?
 - HOW IS SHEET RHO FOUND?
 - VIA RESISTANCE
 - NO SHEET RHO, WHY?

- **CAPACITANCE**
 - METAL1 OVER SUBSTRATE
 - WHERE ARE TERMINALS?
 - DISTRIBUTED CAP → LUMPED
 - METAL2 OVER METAL 1

- **DISTRIBUTIONS**
 - RESISTANCES, CAPS DO NOT HAVE ONE VALUE ONLY
ELECTROMIGRATION, DRC

- ELECTROMIGRATION
 - LIMITS I_{max}
 - DUE TO BAMBOO FORMATION
 - SEPARATION, FAILURE

- DRC RULES
 - BOOK VALUES ARE NOT TYPICAL
 - NEED DESIGN RULE PRIMER

- TERMINOLOGY – BASIC RULES
 - ENCLOSURE
 - SPACING
 - WIDTH
 - OVERLAP

KEY PHRASE, THESE ARE NOT THE RULES THAT YOU USE

http://www.ifw-dresden.de/ifs/31/gfa/em_e.htm
Cross Talk, Ground Bounce

DESCRIPTION
- CONDUCTORS INTERACT
 - EM FIELD OVERLAP, V INDUCED

- CROSS TALK
 - AC SIGNALS
 - \(I_{\text{mutual}} = C_{\text{mutual}} \frac{dV_{\text{signal}}}{dt} \)

- GROUND BOUNCE
 - AC, DC SIGNALS

- \(V=IR \)
 - CAUSE AND EFFECT
 - V IS FROM POWER SUPPLY
 - I IS FROM V/R
 - R IS FIXED, BASED ON ROUTING

- DECOUPLING CAP
 - STORES VDD CHARGE
 - TRANSIENT CURRENT

Figure 3.16 Conduors used to illustrate crosstalk.

Figure 3.17 Illustrating problems with incorrectly sized conductors.

Figure 3.18 Estimating the decoupling capacitance needed in an output buffer.
DECOUPLING CAP

Example: 3.9
- Circuit during switching needs 50uA for 10 ns
 - \(I = C \cdot \frac{dV}{dt} \)
- What's size of decoupling cap, to keep \(\Delta V \) below 10 mV?

Solution
- \(Q = I \cdot \Delta t = 50\mu A \cdot 10 \text{ ns} = 500 \text{ fC} \)
- \(Q = C \cdot \Delta V \)
 - \(C = \frac{Q}{\Delta V} = \frac{500 \text{ fC}}{10 \text{ mV}} = 50 \text{ pF} \)

Figure 3.17 Illustrating problems with incorrectly sized conductors.

Figure 3.18 Estimating the decoupling capacitance needed in an output buffer.