Chapter 2

- The Well
 - Cross Sections
 - Patterning
 - Design Rules
 - Resistance
 - PN Junction
 - Diffusion Capacitance
Cross Sections

Figures from CMOS Circuit Design, Layout, and Simulation, Second Edition
By R. Jacob Baker, Copyright Wiley-IEEE

DESCRIPTION

– **Substrate**
 - Epi → epitaxial layer (p-), expensive
 - p+ Boron doping substrate
 - Body of NMOS

– **PWell**
 - No PWell, unless expensive process
 - Twin tub/moat
 - Old nomenclature, do not use

– **NWell**
 - n- Phosphoros doping
 - Isolation by parasitic diode
 - Can be used as a resistor
 - Current flows where?
 - What potential problem?

Figure 2.1 The top (layout) and side (cross-sectional) view of a die.

Figure 2.2 The n-well can be used as a resistor.
Generic Patterning

Figures from CMOS Circuit Design, Layout, and Simulation, Second Edition

- **A,B) Starting material**
 - P-type Si, ~500µm thick

- **C) Grow oxide**
 - Thermal process, SiO2 result
 - Dry Oxide, less defects, longer
 - Wet Oxide, more defects, shorter
 - Consumes Si

- **D) Deposit photoresist (PR)**
 - Spin on viscous liquid ~1µm
 - Soft bake to harden

- **E,F) Align mask**
 - Mask was made from layout tool

- **G) Expose PR**
 - Light will make PR more acidic/basic
 - Over/Under expose feature size
 - Hard bake

- **H) Develop PR**
 - Neutralize expose PR

- **I) Etch underlying layer**
 - Acid etch, H2SO4 or similar

- **J) Remove PR**
 - Clean up, do not leave residue

DESCRIPTION

- **A,B) Starting material**
 - P-type Si, ~500µm thick

- **C) Grow oxide**
 - Thermal process, SiO2 result
 - Dry Oxide, less defects, longer
 - Wet Oxide, more defects, shorter
 - Consumes Si

- **D) Deposit photoresist (PR)**
 - Spin on viscous liquid ~1µm
 - Soft bake to harden

- **E,F) Align mask**
 - Mask was made from layout tool

- **G) Expose PR**
 - Light will make PR more acidic/basic
 - Over/Under expose feature size
 - Hard bake

- **H) Develop PR**
 - Neutralize expose PR

- **I) Etch underlying layer**
 - Acid etch, H2SO4 or similar

- **J) Remove PR**
 - Clean up, do not leave residue
Nwell Patterning

- Deposit PR
- Expose PR
 - Nwell layout from tool → mask
- Develop PR
- Implant Nwell
 - N- Phosphoros
 - Depth of implant set by energy
- Diffuse dopant material
 - Diffusion coefficient
 - Gaussian profile → rectangular
- Remove PR
- Nwell formed
Design Rules

- **DESCRIPTION**
 - DESIGN RULE CHECK
 - DRC
 - NWELL-NWELL SPACING
 - INTERLAYER
 - ISOLATION DRIVEN
 - NWELL WIDTH, LENGTH
 - INTERLAYER
 - PR, IMPLANT DRIVEN
 - Bipolar parasitics formed
 - NPN, weak beta
 - Depends on what node for activity?

Figure 2.7 Sample design rules for the n-well.
Resistance

*Figures from CMOS Circuit Design, Layout, and Simulation, Second Edition
By R. Jacob Baker, Copyright Wiley-IEEE*

Mathematical Description:

- \[R = \frac{\rho \cdot L}{A} = \frac{\rho \cdot L}{W \cdot t} = \frac{\rho}{S} \cdot \frac{L}{W} \]

- **SHEET RESISTANCE**
 - LUMP THICKNESS INTO VALUE
 - NEED SEPARATE MONITOR

- **NUMBER OF SQUARES**
 - CURRENT DIRECTION
 - SQUARES = \(\frac{L}{W} \)

- **TAP**
 - N+ to Nwell
 - P+ to Psub

- **DIFFUSION**
 - N+ in Psub
 - P+ in NWell

- **Contact to Nwell**
 - Not as shown, but close
 - Nwell must enclose tap
 - Metal is really contact / LI layer
PN Junction

DESCRIPTION

- **USES**
 - ISOLATION
 - ACTIVE DIODE
- CONDUCTION, VALENCE BANDS
 - SEPARATED BY BANDGAP
- OFFSET IN BANDS PRODUCE V_{bi}
- FORWARD BIAS, OVERCOME V_{bi}

Figure 2.11 An electron moving to the conduction band, leaving behind a hole in the valence band.

(a) Intrinsic silicon (b) p-type silicon (c) n-type silicon

(d) A pn-junction diode

Figure 2.12 The Fermi energy levels in various structures.
Depl, Diffusion Capacitance

DESCRIPTION

- DEPLETION REGION ISOLATION
 - AKA JUNCTION ISOLATION
 - NO CURRENT CONDUCTION
 - WIDTH OF DEPL LAYER VS. BIAS
 - LOWER DOPING, LARGER Wdepl

- UNDERSTAND CAPACITANCE
 - FUNDAMENTAL
 - REPEATED IN ALL DEVICES

- SIDEWALL VS. BOTTOM WALL
 - DIFFERENT PHYSICS, MODEL
 - DOPING, ISOLATION DIFFERENT

- ZERO BIAS DEPL IN MODELS (CJ₀)
 - CAP EXISTS AT ZERO BIAS
 - CAP INCREASES W/INCR FB

- DIFFUSION CAP
 - PRESENT IN FORWARD BIAS (FB)
 - OP POINT FOR DIODE USUALLY RB
• When p-type and n-type materials are joined, diffusion occurs.

Excess holes in p-type region diffuse to n-type, and excess electrons in n-type diffuse to p-type region

• This diffusion is opposed by the resulting electric field of the uncovered ionic charges. The positive ion cores in the n-type region oppose the diffusion of the p-type carriers from the p-type region, and vice-versa.

• The exposed ionic cores in the p-type region (negative, Na) must be matched by the exposed ionic cores in the n-type region (positive, Nd), leaving a net charge-neutral device:
 \[q_A x_p N_A = q_A x_n N_D \]

• If \(A \) is the same on both sides, then
 \[x_p N_A = x_n N_D \]
meaning the depletion depth is greater for a more lightly doped region

• The ionic charge results in an E-field, which causes a built-in potential to form. This \(V_{bi} \) will oppose the diffusion and it will match the \(-qV_{bi} \) in the band diagrams.

\[C = \frac{\varepsilon A}{t} \]