DESIGN PROBLEM: Design UE, ESLA broadside array with \(N=5 \) and smallest half-power beam width \(HP \).

1. Given \(SLL=-20\text{dB} \), find \(d \) and calculate \(HP \).
2. Given \(SLL=-10\text{dB} \), find \(d \) and calculate \(HP \).

SOLUTION

For both cases, we need to know what is the maximum sidelobe level (not including the grating lobes)? This has be found to be -12.04dB in the previous example.

(1) For \(SLL=-20\text{dB} \), or \(SLL=0.1 \), we can only include part of the first sidelobes.

Set \[
\left| \frac{\sin(2.5\psi_s)}{5\sin(0.5\psi_s)} \right| = 0.1, \quad \psi_s = 1.3867
\]

Since \(\psi_s = \beta d \), \(d = 1.3867\lambda/(2\pi) = 0.22\lambda \)

To find out \(HP \), let

\[
\left| \frac{\sin(2.5\psi_H)}{5\sin(0.5\psi_H)} \right| = 0.7071, \quad \psi_H = 0.5665
\]

Hence \(\psi_H = \beta d \cos \theta_R = 0.5665 \Rightarrow \theta_R = 65.9^\circ \)

\(HP = 2 \times (90 - 65.9) = 48.2^\circ \)

(2) Since the highest sidelobe level is -12.04dB, we can include part of the grating lobe in the visible region to achieve smallest \(HP \).

Let \[
\left| \frac{\sin(2.5\psi_s)}{5\sin(0.5\psi_s)} \right| = 0.3162, \quad \psi_s = 5.345
\]

Since \(\psi_s = \beta d \), \(d = 5.345\lambda/(2\pi) = 0.8507\lambda \)

From the above, \(\psi_H = 0.5665 = \beta d \cos \theta_R \Rightarrow \theta_R = 83.9^\circ \)

\(HP = 2 \times (90 - 83.9) = 12.2^\circ \)
Comments:

Consider a broadside array with N=5, SLL=-20dB, and
\[d = 0.7814\lambda \]. The excitations are:
\[1.40 : 2.25 : 2.70 : 2.25 : 1.40 \]
Using a computer program we found that the HP is \(15.1^\circ \)
which is less than the result of \(48.2^\circ \) in case (1) of the
previous example.

Again, if we have N=5, SLL=-10dB, and \(d = 0.86\lambda \). The
excitations are: \[0.746 : 0.541 : 0.590 : 0.541 : 0.746 \]

The HP is found to be \(11.36^\circ \). This is less than the result of
\(12.2^\circ \) obtained in the case 2 of the previous example.

It is clear that for given N and SLL, the non-uniform
excitation can achieve smaller HP compared to UE.

Question: Is there a method to design non-UE, ESLA for
narrowest beam-width given the SLL and N?

Answer: yes, use the Chebyshev synthesis method.
Chebyshev Polynomials and their properties

\[T_0(x) = 1, \quad T_1(x) = x \]
\[T_2(x) = x^2 - 1, \quad T_3(x) = 4x^3 - 3x \]
\[T_4(x) = 8x^4 - 8x^2 + 1 \]

Generally, for \(n > 1 \): we have recursive expression:
\[T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x) \]

Closed form expression:
\[
T_n(x) = \begin{cases}
(-1)^n \cosh\left[n \cosh^{-1}|x|\right], & x < -1 \\
\cos\left[n \cos^{-1}x\right], & -1 \leq x \leq 1 \\
\cosh\left[n \cosh^{-1}x\right], & x > 1
\end{cases}
\]

Properties:
1. \(|T_n(x)| \leq 1 \text{ for } |x| \leq 1\)
2. All polynomial pass through \((1,1)\).
(4) Consider the symmetric excited broadside ESLA shown below. Let $\psi = \beta d \cos \theta$

For $N=2$:

$$AF = I_{-1}e^{j\psi/2} + I_1e^{-j\psi/2} = (2I_1)\cos(\psi/2)$$

For $N=3$:

$$AF = I_{-1}e^{j\psi} + I_0 + I_1e^{-j\psi} = I_0 + (2I_1)\cos(\psi)$$

$$= I_0 + (2I_1)[2\cos^2(\psi/2) - 1]$$

$$= (I_0 - 2I_1) + (4I_1)\cos^2(\psi/2)$$

For $N=4$:

$$AF = I_{-2}e^{j1.5\psi} + I_{-1}e^{j0.5\psi} + I_1e^{-j0.5\psi} + I_2e^{-j1.5\psi}$$

$$= (2I_1)\cos(\psi/2) + (2I_2)\cos(3\psi/2)$$

$$= (2I_1)\cos(\psi/2) + (2I_2)[4\cos^3(\psi/2) - 3\cos(\psi/2)]$$

$$= (2I_1 - 6I_2)\cos(\psi/2) + (8I_2)\cos^3(\psi/2)$$

This process can be continued for any value of N. We observed that the AF are polynomials of $\cos(\psi/2)$.
Let $x_0 > 1$. If we map x_0 to main beam maximum ($\theta = 90^\circ$) and map $-1 \leq x \leq 1$ to the side lobe regions, then we can achieve design Chebyshev arrays. The above mentioned mapping can be realized if we let

$$x = x_0 \cos \left(\psi / 2 \right)$$

Under this transformation, the AF for $N=4$ can be written as

$$AF = \left[\frac{2I_1 - 6I_2}{x_0} \right] x^2 + \left[\frac{8I_2}{x_0^3} \right] x^3 = 4x^3 - 3x$$

Where

$$8I_2 = 4x_0^3, \quad 6I_2 - 2I_1 = 3x_0$$

When $\theta = 90^\circ, \psi = 0$, and $x = x_0$, $AF(90^\circ) = T_{p^{-1}}(x_0)$. As a result, x_0 can be determined by main-beam maximum. Since the sidelobe value in this case are all equal to 1, the sidelobe level can be written as

$$SLL = 20 \log \left(1 / R \right) = -20 \log(R),$$

where R is the mainbeam maximum.
Design procedure: Given N, $\alpha = 0$, and SLL (dB)

1. Determine R from SLL (dB): $R = 10^{\frac{SLL}{20}}$
2. Determine x_0 using
 $$T_{p-1}(x_0) = \cosh \left[(P-1) \cosh^{-1}(x_0) \right] = R$$
 $$x_0 = \cosh \left[\frac{1}{P-1} \cosh^{-1}(R) \right]$$
3. Determine the excitation amplitudes
4. Calculate d by imposing minimum beamwidth condition.

$$d = \lambda \left[1 - \frac{1}{\pi} \cosh^{-1} \left(\frac{1}{\gamma} \right) \right],$$

$$\gamma = \cosh \left[\frac{1}{P-1} \ln \left(R + \sqrt{R^2 - 1} \right) \right]$$

Coefficients relationship with x_0:

N=2: \hspace{1cm} 2I_1 = x_0

N=3: \hspace{1cm}
\[\begin{align*}
4I_1 &= 2x_0^2 \\
2I_1 - I_0 &= 1
\end{align*}\]

\[\begin{align*}
I_1 &= x_0^2/2 \\
I_0 &= x_0^2 - 1
\end{align*}\]

N=4: \hspace{1cm}
\[\begin{align*}
8I_2 &= 4x_0^3, \\
6I_2 - 2I_1 &= 3x_0
\end{align*}\]

\[\begin{align*}
I_2 &= x_0^3/2 \\
I_1 &= (3x_0^3 - 3x_0)/2
\end{align*}\]

N=5: \hspace{1cm}
\[\begin{align*}
16I_2 &= 8x_0^4 \\
16I_2 - 4I_1 &= 8x_0^2 \\
I_0 - 2I_1 + 2I_2 &= 1
\end{align*}\]

\[\begin{align*}
I_2 &= x_0^4/2 \\
I_1 &= 2x_0^4 - 2x_0^2 \\
I_0 &= 3x_0^4 - 4x_0^2 + 1
\end{align*}\]
Design examples: N=5, Broadside, SLL=-20dB

Solution:

\[R = 10^{\frac{SLL}{20}} = 10^{-\frac{20}{20}} = 0.1 \]

\[x_0 = \cosh \left[\frac{1}{4} \cosh^{-1}(10) \right] = 1.2933 \]

\[I_2 = \frac{x_0^4}{2} = \frac{1.2933^4}{2} = 1.40 \]

\[I_1 = 2x_0^4 - 2x_0^2 = 2.25 \]

\[I_0 = 3x_0^4 - 4x_0^2 + 1 = 2.702 \]

Calculate separation d:

\[\gamma = \cosh \left[\frac{1}{4} \ln \left(10 + \sqrt{10^2 - 1} \right) \right] = 1.2933 \]

\[d = \lambda \left[1 - \frac{1}{\pi} \cos^{-1} \left(\frac{1}{1.2933} \right) \right] = 0.7814 \lambda \]

\[x_H = \cosh \left[\frac{1}{4} \cosh^{-1} \left(\frac{10}{\sqrt{2}} \right) \right] = 1.2266 \]

\[\psi_H = 2 \cos^{-1} \left(\frac{x_H}{x_0} \right) = 0.465 = \beta d \cos \theta_H \]

\[\theta_H = 82.45^0, \quad HP = 15.1^0 \]