1.a) Determine the type number of the following open-loop Z-domain transfer functions:

i) \(G(z) = \frac{10(z + 1)^2}{z(z - 1)} \)

ii) \(G(z) = \frac{10(z + 1)^3}{z^2(z - 1)} \)

iii) \(G(z) = \frac{10(z + 1)^3}{z(z - 1)^2} \)

Solution: i) type 1 ii) type 1 iii) type 2

b) Let \(T_s = 100 \) msec and find the static error coefficients \(K_p, K_v \) and \(K_a \) for problem 1a) (assume unity feedback).

Solution:

i) \(K_p = \lim_{z \to 1} G(z) = \infty \), \(K_v = \lim_{z \to 1} \frac{z-1}{T_s} G(z) = 40 / T_s = 400 \), \(K_a = \lim_{z \to 1} \left(\frac{z-1}{T_s} \right)^2 G(z) = 0 \)

ii) \(K_p = \lim_{z \to 1} G(z) = \infty \), \(K_v = \lim_{z \to 1} \frac{z-1}{T_s} G(z) = 80 / T_s = 800 \), \(K_a = \lim_{z \to 1} \left(\frac{z-1}{T_s} \right)^2 G(z) = 0 \)

iii) \(K_p = \lim_{z \to 1} G(z) = \infty \), \(K_v = \lim_{z \to 1} \frac{z-1}{T_s} G(z) = \infty \), \(K_a = \lim_{z \to 1} \left(\frac{z-1}{T_s} \right)^2 G(z) = 80 / (T_s)^2 = 8000 \)

c) For each of the closed-loop unity feedback systems in part a), find:

i) \(e_s \) due to a step
ii) \(e_s \) due to a ramp
iii) \(e_s \) due to a parabola

i) \(e_s \) due to a step = 1/(1+Kp) = 0 (part 1a)i)), = 0 (part 1a)ii)), = 0 (part 1a)iii))

ii) \(e_s \) due to a ramp = 1/Kv = 1/400 (part 1a)i)), = 1/800 (part 1a)ii)), = 0 (part 1a)iii))

iii) \(e_s \) due to a parabola = 1/Ka = \(\infty \) (part 1a)i)), = \(\infty \) (part 1a)ii)), = 1/8000 (part 1a)iii))

d) Sketch the root locus for the systems in part a).

Solution:

![Root locus of Prob. 1a) part i)](image)

![Root locus of Prob. 1a) part ii)](image)

![Root locus of Prob. 1a) part iii)](image)

2. Given the system

\[
\begin{align*}
\text{W}(s) & \quad \text{+} & \quad \text{T} & \quad \text{G}(z) & \quad \text{=} & \quad \text{G}_{\text{o}}(z) & \quad \text{=} & \quad \frac{10}{z(z + 8)} \\
\text{G}_{\text{na}}(z) & \quad \rightarrow & \quad \text{Y}(s)
\end{align*}
\]

a) Find a Z-domain model for the open-loop system including the ZOH if \(T_s = 10 \) msec.

Solution:

\[
G_{na}(z) = \left[z^{-1} \right] \left[G_{na}(s)/s \right] = \left[z^{-1} \right] \left[10/(s(z + 8)) \right] = \left[z^{-1} \right] 1.2019 \times 10^{-6} (z+1)^5((z-1)^7(z-0.9231)) = 1.2019 \times 10^{-6} (z+1)^5((z-1)(z-0.9231))
\]
b) What type number is your Z-domain model? What type is the original model?

Solution: Since \(G_{zo}G(z) \) has one open-loop pole at \(z=1 \), it is a type one system. Since the original \(G_{zo}G(s) \) has one open-loop pole at \(s=1 \), it is also a type one system.

c) Find \(e_u \) due to a step, \(e_u \) due to a ramp, and \(e_u \) due to a parabola for your uncompensated model.

Solution:

\[
K_p = \lim_{z \to 1} G_{zoh} G(z) = \infty, \quad K_v = \lim_{z \to 1} \frac{z-1}{z T_s} G(z) = 1.25 \times 10^{-4} / T_s = 1.25 \times 10^{-2}, \quad K_a = \lim_{z \to 1} \left(\frac{z-1}{z T_s} \right)^2 G(z) = 0
\]

Thus, \(e_{step} = 1/(1+K_p) = 0 \), \(e_{ramp} = 1/K_v = 80 \), \(e_u \) due to a parabola = \(1/K_a \) = \(\infty \).

d) Given the following transient specifications: \(t_s < 0.4 \) sec and \(M_p < 2\% \). Illustrate the region of the s-plane and the z-plane where we must place our dominant poles to satisfy these specs.

Solution: From the first spec, we find that \(t_s < 0.4 \Rightarrow \zeta \omega_n > 10 \). From the second spec we find that \(M_p = \frac{-\zeta^2}{\sqrt{1-\zeta^2}} \times 100\% \). Or, solving this relationship for the damping coefficient we obtain, \(\zeta = \frac{\ln(m)^2}{\pi^2 + \ln(m)^2} \) where \(m = M_p/100\% = 0.02 \). Thus, \(\zeta = \frac{\ln(0.02)^2}{\pi^2 + \ln(0.02)^2} = 0.7797 = \cos \theta \). Hence, \(\theta = \cos^{-1}(\zeta) = \cos^{-1}(0.7797) = 38.77^\circ \).

Since we must have \(M_p < 2\% \), our constraint becomes \(\theta \leq 38.77^\circ \). In the s-plane, we obtain the following region:

In the z-plane, this region maps to:

e) Design \(G_c(z) \) (plus possibly a lag compensator) to meet the above specs plus the added spec that \(e_u \) due to ramp \(\leq 1/50 \).

Solution: We must first design a lead compensator to meet the transient specs. To be consistent, let’s pick the desired dominant poles to be \(s_1 = -11 + j6 \) which maps to \(z_1 = 0.8942 + j0.0537 \). Perhaps the uncompensated root locus will pass thru \(z1 \). To check, let’s sketch the uncompensated root locus of \(G_{zo}G(z) = 1.2019 \times 10^4 (z+1)^3(1/(z-1)/(z(z-0.9231))) \):
As can be seen, the root locus does not pass thru z_1. Next, let’s find the angle of deficiency (i.e., the amount of lead angle needed to bend the root locus thru z_s). The angle of deficiency is $\angle G_{lead}(z_1) = 180^\circ \times odd# - \angle G_{zoh}G(z_1)|_{z_1=0.89+j0.054} = 180^\circ \times odd# - 90.12^\circ = 89.88^\circ$. Therefore, our lead compensator must supply 89.88 degrees (this compares favorably to the solution in the s-plane which provided 89.77 degrees).

Let’s pick $-z_c$ to be as far to the left as possible while still having $-p_c$ to the right of the origin. Let $z_c = -0.8976$. Then $\angle G_{lead}(z_1) = 89.88^\circ = \angle(z_1 + 0.8976) - \angle(z_1 + p_c) = 92.63^\circ - \angle(z_1 + p_c)$ or $\angle(z_1 + p_c) = 351^\circ$. Solving for p_c: $IM(z_1) / RE(z_1 + p_c) = tan(213^\circ) or p_c = IM(z_1) / tan(351^\circ) - RE(z_1) = -0.0189$. The last step is to find K_c from the magnitude condition: $K_c = 1 / |G_{zoh}G(z_1)(z_1 + z_c)/(z_1 + p_c)| = 12.910$. Thus, the lead compensator is $G_{lead}(s)=12.910(z-0.8976)/(z-0.0189)$. Finally, after performing the lead compensator design, we can find a lag compensator to put in series with G_{lead}. The desired K_v is 50 to meet the e_{ss} specs. Thus, $K_v = \lim_{z \to \infty} \frac{z}{T_s} = 16.84$. Thus, we need to increase the steady-state gain by a factor of $50/16.84=2.9694$ to meet our e_{ss} specs. Therefore, Let $(1+z_{lag})/(1+p_{lag}) = 2.986$. Let’s pick $p_{lag} = -0.9999$. Thus, $z_{lag}=-0.9997$. To find K_{lag}, use the magnitude condition: $K_{lag} = 1 / |(z_{lag}/(z-0.9997))G_c G_{zoh}G(z)|_{z_1=0.89+j0.054} = 10015$. Therefore, the lag compensator which must be inserted in series with $G_{lead}(z)$ is $G_{lag}(z) = 1.0015(z-0.9997)/(z-0.9999)$.

f) Simulate a step and ramp response of your closed-loop compensated digital system using dlsim() in MATLAB. Measure $t_s, M_p, and e_{ss}$ (both step and ramp).

Solution: The closed-loop step and ramp responses are shown below:
g) How do your digital compensator numbers compare to the $G_c(z)$ we designed for this system in HWs #15 and #16?

Solution: The numbers are almost identical except for K_{lead} which is about 100 times greater.