At the completion of EE571, you should be able to perform the following objectives:

Exam I Objectives
- Obtain state variable model from a circuit (mechanical or electrical)
- Obtain a state variable model from a system
- Find the state transition matrix \(e^{At} \) 3 different ways
- Solve the state variable model using time domain techniques
- Prove basic Laplace transform theorems
- Solve the state variable model using Laplace transform techniques
- Identify redundant state variables
- Obtain a functional block diagram of a system from a schematic (component) diagram
- Obtain a transfer function from
 - Block diagram reduction
 - A state variable model
 - A SFG using Mason's gain formula
 - From actual step response data
 - Directly from a circuit
- Analyze and design 2nd-order systems
- Determine 2nd-order parameters (e.g., \(t_s \), \(t_p \), and \(M_p \)) both analytically and experimentally
- Give definition of stable, marginally stable and unstable systems in terms of:
 - The zero-input response and the eigenvalues of \(A \)
 - The impulse response and the poles of \(H(s) \)
- Use integration, transient response, frequency response, and steady-state response techniques to determine internal system parameters
- Obtain a simulation SFG diagram and a state variable model for a given transfer function ways:
 - Phase variables
 - Canonical (decoupled) variables
- Find similarity transformations to place a given state variable model into phase variable and canonical (decoupled) form
- Determine regions of the complex-plane where eigenvalues must reside to meet transient specs
- Determine controllable, observable, and stable eigenvalues of a single-input single-output (SISO) system
- Design a state feedback regulator of the form \(w = -Kx \) to place eigenvalues of a single-input system in phase variable form.
- Use the controllability matrix to determine the number of uncontrollable modes \(\cdot \) (eigenvalues) of a multi-input system
- Use the observability matrix to determine the number of unobservable modes \(\cdot \) (eigenvalues) of a multi-input system
- Understand and design full-order and improved observers for single- and multi-output systems
- Understand the concepts of stabilizability and detectability
- Understand the separation principle
- Analyze and design 2nd-order systems
- Use the Routh table to determine the stability of a system
- Determine the type number of a system
- Perform steady-state error analysis for a variety of type numbers and inputs
- Understand and construct root loci of systems
- Compensation techniques based on root locus:
 - Use specs to determine pair of dominant closed-loop poles
 - Understand and perform lead compensation and calculate angle of deficiency
 - Understand and perform lag compensation
 - Understand and perform pole-zero cancellation
 - Understand and perform proportional-plus-derivative compensation (PD)
 - Understand and perform proportional-plus-integral compensation (PI)
 - Understand and perform proportional-plus-integral-derivative compensation (PID)
- Realize compensators using op-amps
- Frequency domain techniques:
 - Understand and construct asymptotic Bode plots
 - Obtain models from experimental data
 - Model and understand the effect of quadratic terms on bode plots
 - Model and understand the effect of non-minimum phase terms on bode plots
 - Understand and perform lead compensation and calculate angle of deficiency
 - Understand and perform lag compensation
 - Understand and perform pole-zero cancellation
 - Understand and perform proportional-plus-derivative compensation (PD)
 - Understand and perform proportional-plus-integral compensation (PI)
 - Understand and perform proportional-plus-integral-derivative compensation (PID)
- Design simple attenuators to meet gain and phase margin specs

Exam II Objectives
- Do all Exam I objectives!
- Use the mapping theorem to determine stability (Nyquist stability)
- Understand and evaluate gain and phase margins
- Design simple attenuators to meet gain and phase margin specs
- Measure gain and phase margins from actual data
- Use the design equations for a lead compensator using frequency response criterion
- Derive design equations for lag compensators in the frequency domain
- Design lead and lag compensators to meet frequency response criterion
- Find the bandwidth of a closed-loop system and determine the effect of additive noise in the input