Dramatic Reduction of Gate Leakage Current of Ultrathin Oxides through Oxide Structure Modification

Zhi Chen, Jun Guo, and Chandan B. Samantaray

Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506

Dept. of Electrical and Computer Engineering

Outline

- Theory of Hydrogen/Deuterium Isotope Effect
- Experimental Evidence for Origin of Isotope Effect
- Discovery of Phonon Energy-Coupling Enhancement
- Dramatic Improvement of Quality of Gate Oxides

Hot electr ons desorb hydr ogen, cr eating interface states which degrade device performance.

University of Kentucky

Van de Walle & Jackson Theory (Van de Walle et al., Appl. Phys. Lett. vol. 69, 2441 (1996))

Two competing processes:

•Hot electron excitation causes Si-H/D bond breaking.

•De-excitation is due to energy coupling from Si-D to phonon.

Reason: $v \propto \sqrt{1/m}$ based on IR spectroscopy theory

Si-H vibrational frequency $v \sim 650 \text{ cm}^{-1}$. Si-D vibrational frequency $\approx 460 \text{ cm}^{-1}$ (Si-Si TO phonon mode)

De-excitation is more efficient for Si-D bonds than for Si-H bonds ---This is why Si-D bonds are stronger than Si-H ones.

Schematic of Hydrogen/Deuterium Effect: Energy coupling from Si-D bending mode to Si-Si TO phonon mode No coupling from Si-H bending mode to Si-Si TO phonon mode

Direct Measurement of the Vibrational Frequency of Si-H/D Bonds

No experimental data available for Si-D vibrational frequency in the SiO₂/Si interface

Only in the deuterated amorphous Si (α -Si), the vibrational frequency (510 cm⁻¹) was measured*. However, the chemical environment of the amorphous Si is very different from that of crystal Si.

*J.-H. Wei, M.-S. Sun, and S.-C. Lee, Appl. Phys. Lett. 71, 1498 (1997).

Origin of the Isotope Effect: No Energy Coupling from Si-H to Si-Si TO phonon

No difference between the H-annealed sample and the as-oxidized one, except for the Si-H bending vibration. (*Chen et al. Appl. Phys. Lett. 83, 2151-2153, (2003)*)

Dept. of Electrical and Computer Engineering

University of Kentucky

Si-Si TO

Origin of the Isotope Effect: Energy Coupling from Si-D to Si-Si TO phonon & <u>Si-O TO rocking mode</u> (Chen et al. Appl. Phys. Lett.)

Dept. of Electrical and Computer Engineering

New finding: Energy is coupled from Si-D bending mode to Si-Si TO phonon mode and also to Si-O TO rocking mode

(Chen et al. Appl. Phys. Lett. 83, 2151-2153, (2003))

University of Kentucky

Challenge: How to further enhance the energy coupling?

Hypothesis: Shift the Si-D vibrational mode toward Si-Si TO phonon mode.

Method 1: Mechanical stress just a little shift (~6-8 cm⁻¹) Method 2: Electrical stress

Method 3: Thermal stress

How?

University of Kentucky

Surprising Discovery: Phonon Energy-Coupling Enhancement

The absorbance of the Si-Si TO phonon mode, the Si-O TO rocking mode, and Si-Si LO mode are all enhanced significantly (>50%) after rapid thermal processing (RTP). There is further enhancement after deuterium annealing. T_{ox} =23 nm.

University of Kentucky

The Enhancement is not due to the Surface Plasmon.

It is well-known that the surface plasmon on the nanoscale metallic islands also produces strong surface-enhanced IR spectra. In order to avoid the metallic island-like surface, we used n⁻ wafer (n=2×10¹⁴ cm⁻³ and ρ =20.8 Ω -cm) for experiments.

Dept. of Electrical and Computer Engineering

Dependence of Enhancement on the Oxide Thickness

For thick oxide (T_{ox} =80 nm), there is almost no enhancement except for the Si-Si LO mode after rapid thermal processing (RTP)---- implying stress-related phenomena. This also suggests that there should be no effect for the polysilicon/oxide stack.

Dependence of Enhancement on the Cooling Time

The enhancement is strongly dependent on the cooling time ----implying the stress-related phenomena.

University of Kentucky

Phonon Energy-Coupling Enhancement: improvement of hotelectron degradation

Z. Chen and J. Guo, presented at the 35th IEEE SISC, San Diego, CA, Dec. 9-11, 2004.

Hypothesis: Si-O bonds might be strengthened. This is because energy is also coupled from Si-O rocking mode to Si-Si TO phonon mode and also to Si-D bending mode

University of Kentucky

Hydrogen/Deuterium Effect on Gate Oxide: No Effect

Direct Rapid Thermal Processing Only: Improvement of Breakdown Voltage (15%) and Reduction of Leakage Current (10X)

Dept. of Electrical and Computer Engineering

Direct Rapid Thermal Processing Plus D₂ Annaeal: Improvement of Breakdown Voltage (30%) and Reduction of Leakage Current (100X)

University of Kentucky

Direct Rapid Thermal Processing Plus D₂ Anneal: Improvement of Breakdown Voltage (30%) and Reduction of Leakage Current (100X)

University of Kentucky

Direct Rapid Thermal Processing Plus D₂ Anneal of Thin Oxides: Reduction of leakage current (10⁵X)

This is similar to that of HfSiON (Gusev et al., IEDM Technical Digest, 451-454 (2001))

University of Kentucky

Capacitance-Voltage Curves and oxide thickness of oxide measured before and after RTP

There is only a slight flat-band voltage shift and thickness remains unchanged after RTP.

Summary

- We discovered a new effect, phonon energy-coupling enhancement, i.e. the energy coupling from the Si-D bond to the Si-Si TO mode and the Si-O rocking mode is dramatically enhanced after the RTP processing directly on the oxide.
- In addition to strengthening Si-D bonds, Si-O bonds are also strengthened. The breakdown voltage of oxides after RTP processing is improved by 30%.
- The leakage current of thin oxide (2.2 nm) after direct RTP processing is reduced by 10⁵ times, similar to that of high-k oxides.

Acknowledgements

• This research is supported by National Science Foundation ECS-0093156 and EPS- 0447479.