
Transforming Web Graphics for Mobile Devices

Meikang Qiu Kang Zhang

The University of Texas at Dallas

Abstract
As the Web has been developed quickly, there are more and more demands for accessing Web
applications from mobile devices such as PDAs. Since the screen size of a mobile device is very limited
and varies from each other, we need a capability of transformation from Web graphs to suit mobile
device displays. Such a transformation usually includes location change, differential scaling and
semantic zooming. This paper presents a visual approach to the layout transformation of graphical
objects from the Web to mobile device screens. The underlying theory of our approach is a context-
sensitive graph grammar formalism. We use an enhanced node-edge diagram with a spatial partitioning
mechanism to represent layout structures and support automatic transformations. Several examples of
graph transformations are provided to demonstrate the conciseness and expressiveness of our context-
sensitive graph grammar formalism. Theses extended context-sensitive graph grammars with spatial
specifications can also be used in a wide range of applications such as multimedia interfaces, electronic
publishing and XML document conversion.

Keywords: Graph Transformation, Layout, Mobile Device, PDA, Visual Languages, Graph
Grammars, Parsing.

1. Introduction
With the rapid development of the Internet technology, there are more and more graphs to be
delivery on the Web. At the client side, there are various kinds of viewing conditions, such as
varying screen sizes, style preferences, and different device capabilities. For example, consider
the case of a user viewing a diagram representing an organizational structure on the Web, the
fully expanded diagram is of considerable complexity and may be unsuitable for small displays
[11]. Thus, if the diagram is to be viewed on the screen of a mobile device such as a PDA
(Personal Digital Assistant), the original layout may not be appropriate. The small size and forms
of display on PDAs introduce several new constraints for human computer interaction design.
Further, the standard components of traditional graphical user interfaces, such as scrollbars,
buttons and menus, which on a desktop only take a small percentage of the available screen
estate, take up a considerable percentage of screen space on a PDA [5].

Of various systems that address the above problems, there are primarily two approaches: static
and dynamic (interactive). This paper discusses only the static approach. In the static approach,
the techniques include:

• Alternative layout. To adapt to the style of a PDA screen, there is usually a need to
change the position of some object. This implies an alternative layout. For example, a vertical
alignment presents a different visual perception and requires a different screen estate from a
horizontal alignment, as shown in Figure 1.

• Scaling. The simplest solution to the problem of the limited screen size is linear scaling (or
normal zooming), but this is often not the best way. The more elaborate technique is

 1

differential scaling, in which different components of a document are scaled differently.
Differential scaling is effective in compressing white spaces. For example, rather than
performing just a linear scaling, each white space is compressed, while the box sizes are
maintained [11], as illustrated in Figure 2.

A

A B C
B

C
(a)

(b)

 Figure 1 Alternative layout

A B C

CBA

(b)

(a)

 Figure 2 Differential scaling

• Semantic zooming. For varying interest in detail, an adapted layout may initially show
one level of details. It allows the viewer to zoom in hierarchically, while adapting the layout
level of each individual component or group of components to the available screen size or to
the viewer’s preference. This viewing technique is called semantic zooming [11]. For
example we may need to enlarge one part, in which the user is particularly interested, while
compressing unrelated parts, as illustrated in Figure 3.

 2

A

B

A

B

(a) (b)

Figure 3 Semantic zooming and layout change

The central theme of this paper is to demonstrate how to use a graph grammar formalism to
specify and support automatic transformations of graph layout, to reduce Web-based graphical
images to suit mobile devices, such as PDAs, without losing the essence of the images.

The remaining part of the paper is organized as the following: we summarize related work in
Section 2, introduce the grammar abstraction for graphical layout in Section 3. Section 4
discusses a context-sensitive graph grammar formalism, known as the Reserved Graph
Grammar. Section 5 shows the Web information transformation mechanism. Section 6 concludes
the paper, followed by Section 7 that proposes the future work.

2. Related Work
Much research has been conducted in the areas of text summarization and graph compression, as
summarized below.

2.1. Text Summarization:

Buyukkokten et al. [6] presents important ideas of extracting semantics from the Web text yet
greatly shortening the length of text. Usually, each text page is broken into a number of text units
that can be hidden, partially displayed, fully visible, or summarized. There are mainly three
methods for text summarization.

• Page summarization. This technique extracts an overview of a Web page by summarizing it.

• Macro-level summarization. This technique first partitions the page into “Semantic Textual
Units” (STUs). STUs are page fragments such as paragraphs, lists, or ALT tags that describe
images. It then uses fonts and other structural information to identify a hierarchy of STUs.

• Micro-level summarization. This technique explores in more detail a particular page.

Users can combine these three methods, using keywords, then most significant sentences, finally
the entire STUs, to retrieve what they need.

2.2. Graph Compression

Six et al. [15] proposed a post-processing technique (after some major graph layout process),
called refinement, which can significantly improve the quality of orthogonal drawings by
reducing a graph’s area, bends, crossings, and total edge length [3]. Our work is partly inspired
by this work, which is helpful in our layout transformation from the Web to a mobile device

 3

screen. For example, the techniques for handling the problems of stranded nodes, and poor
placement of degree-two nodes are shown in Figures 4 and 5.

B

B

 A

 A

 Figure 4 Stranded nodes problem

 A A

 B B

Figure 5 Poor placement of degree-two nodes

2.3. Dynamic Interfaces

In a dynamic interface, the attributes of elements are defined in terms of other elements and
attributes of the viewing environment:

• Information links indicate a (semantic) connection between two pieces of information, which
can belong to different information domains [5].

• Information view is a collection of correlated objects displayed together to help the user to
perform some activities on the objects [5].

• Interactivity allows the display to be dynamically adapted to the user’s requirement. Borning
et al. presents a system architecture in which both the author and the viewer can impose page
layout constraints. The final appearance of a Web page is thus the result of negotiation
between the author and the viewer [4][11].

• Ubiquitous computing includes three interaction themes: natural interfaces, context-aware
applications, and automated capture and access [1].

• Recognition and mediation. Some user interface toolkit, consist of a library of reusable error
correction, or mediation, can provide structured support for solving ambiguity at the input
event level [10].

• Dynamic authoring. “Authoring” means creating the content for a given kind of presentation
or document [12]. For authoring hypertext structures, it was advocated that capture-based

 4

systems should support flexible hypertext structures generated by linking by interacting
operations [13].

2.4. Graph Transformation:

Research has been done for the graph grammar support for Web information transformations. To
support automatic layout of flowcharts, recently Zhang et al. [21] presents a visual approach to
XML document design and transformation, which uses RGG(Reserved Graph Grammar) [20] to
define the XML syntax and to specify the transformation between different XML formats. In a
graphical layout, maintaining a consistent view by automatically beautifying the display is
desirable [16]. Zhang et al. presents an approach to combining RGG with constraint rules to
support automatic layout of orthogonal graphs [22].

3. Spatial Abstraction for Graphical Layout
We will illustrate our ideas of graph transformations of Web graphics by several examples. As
discussed above, Figure 1 illustrates an alternative layout. For a PDA screen, transforming a
horizontal layout of graphical objects on a Web page to the vertical layout for a PDA screen is
one of the simplest examples of transformations.

We perform the following steps to achieve the desired transformations. First, we translate the
horizontal layout diagram into a graphical form whose syntax is suitable for our grammar
interpretation. We will call such a graphical form a node-edge diagram [21]. A node is a two
level structure: the super vertex is the bounding box of the node, the small rectangles embedded
in a super vertex form the second level, called vertices. An edge is uniquely determined by two
vertices in the involved nodes. There is no semantic difference between connecting to a vertex
and connecting to a super vertex. All vertices should be labeled [20].

In order to represent the direction between two nodes, which is one of the most important
relations in a graph layout, we define the super-vertex as a grid of three rows by three columns,
occupying nine areas as shown in Figure 6. The central area represents the super-vertex itself.
Surrounding the center area, the eight areas represent eight directions: N (North), S (South), E
(East), W (West), NW (Northwest), NE (Northeast), SW (Southwest), SE (Southeast), in
clockwise direction. Each of these directions indicates the relative position of the node connected
to the current node.

E2
C

E1

SESW S

NENW N

W

Each of the eight areas surrounding the central area may include more than one vertex. The
nodes connected to the vertices in the same area are in the same direction. For instance, in Figure
6, the East area of the node has two vertices, E1 and E2, which implies that the nodes connected
to E1 and E2 are both on the right side of this node.

Figure 6 Node structure for location rule

 5

A C
redex

A A BC

Figure 7(a) Node-edge representation of the graph in Figure 1(a)

B

A

C

A

B

redex

 B

 C

We propose the following three sets of general graphical representation rules.

Figure 7(b) Node-edge representation of the graph in Figure 1(b)

• Location rules. We divide the super vertex into three rows by three columns, totally nine
areas. The central area represents the super vertex itself. Around the center area, the eight
areas represent eight directions around the super vertex. For example, in Figure 7 (a), the
vertex B in node A indicates that node B is on the right of node A. Similarly, in node B, the
vertex A indicates that node A is on the left of node B, and vertex C indicates that node C is
on the right of node B.

• Zoom rules. The transformation from a Web page to a PDA screen may involve many size
changes. To represent the changes, we use “+” in the super vertex’s center box to indicate that
the super vertex will zoom in (becoming larger) in the transformation, “-” for zoom out
(smaller), and blank for unchanged size.

• Distance rules. To represent a distance change between two nodes, we postfix a “+” to the
vertex label to indicate a distance increase to the node it connects to, “-” to indicate a distance
decrease, and blank to represent no distance change. When the distance between two nodes is
zero, we consider the two nodes having a touch relationship. If two nodes have a negative
distance between them, we consider the two nodes having an overlapping relationship.
Overlapping relations can be further divided into partial overlapping, full overlapping, and
containing relations.

For example, for the transformation in Figure 2, we use distance rules as shown in Figure 8.

 6

B C A

B- B- A- C-

Figure 8 Graph representation of differential scaling,
 Node-edge diagram for Figure 2(b)

As a layout transformation from Web page to mobile device screen usually involves these three
types of changes, we will apply these three rules simultaneously. Below we will use an example
to illustrate how to apply these transformation rules.

For the example transformation shown in Figure 3, we combine these three rules, and generate
the result as in Figure 9. To explain the transformation in more details, we first translate the
graph in Figure 3 to a node-edge diagram, as shown in Figure 9(a), and then we use the location
rule to generate the graph in Figure 9 (b). Finally applying the zooming and distance rules
generates the result as shown in Figure 9(c). Figure 10 illustrates another useful graphical
information compression technique.

A A A B

B- B

C B
A A-

--
B B

(a) (c) (b)

Figure 9 Application of semantic zooming and distance rules for the
transformation from Figures 3(a) to 3(c)

A-B-

F

A

B

4
igure 10 Graph transformation of Figure
7

4. A Graph Grammar

Information visualization often plays a crucial part in an application [8]. Visual programming
aims at effectively improving the programming productivity by applying visual technologies to
support program construction. Popular visual languages include UML, automata, Petri nets [19]
etc. Compared with text, graphs can represent semantic and structural information more
intuitively.

A graph grammar is made up of a set of rewriting rules called productions as shown in Figure 11.
Each production consists of two sub-graphs, called left graph and right graph. The graph
transformation is a sequence of applications of productions. Applications are classified into L-
applications and R-applications. An L-application (or R-application) is to replace a sub-graph in
the host graph, which is isomorphic to the left (or right) sub-graph of a production, with the right
(or left) sub-graph of a production. One of the most difficult problems with graph transformation
systems is to decide which applications are allowed and which are disallowed. Even for the most
restricted classes of graph grammars the membership problem is NP-hard [14].

Another obstacle to restrict applications of graph grammars is that most proposed parsing
algorithms [7][9][17] are based on context-free graph grammars. Many interesting graphs,
however, cannot be specified by pure context-free grammars. Additional control mechanisms are
necessary for context-sensitivity. In many applications, the logic structure of a graph is too
complex to be defined by a context-free grammar.

Zhang et al. [20] proposed a context-sensitive graph grammar called RGG (Reserved Graph
Grammar). It combines the approaches of embedding rules and context elements to solve the
embedding problem. RGG is a collection of graph rewriting rules represented labeled graphs. It
is context-sensitive and its right and left graphs can have an arbitrary number of nodes and
edges. The grammar uses an enhanced node structure with a marking mechanism in its graph
representation. It is this structure that makes an RGG effective in specifying a wide range of
visual languages and efficient in parsing a certain class of visual languages. Although the time
complexity of the parsing algorithm for a general RGG is exponential, parsing a RGG that
satisfies a constraint can be done in polynomial time [20].

The RGG introduces context information with simple embedding rules and is thus sufficiently
expressive to handle complicated programs. In order to identify any graph elements that should
be reserved during the transformation process, we mark each isomorphic vertex in a production
graph by painting it gray or by prefixing its label with a unique integer. The purpose of marking
a vertex is to preserve the context and to avoid ambiguities. If a super vertex or a vertex is
marked, it will reserve its outgoing edges connected to vertices outside the replaced sub-graph
(called a redex) in the application of a production.

Figure 7(a) shows a node-edge diagram for a Web graph, which can be called a host graph, we
wish to transform it into the one in Figure 7(b), i.e. a node-edge diagram for PDA layout as a
resulting graph. Figure 11 depicts the rewriting rule (production) for this required transformation.

 8

A B
A

B-
:= cB A

A-

B -
c

Figure 11 Marking mechanism in a production

Since in the host graph, the node B has two vertices A and C, we need to mark the super vertex
(represented here as the center of a node) and vertex C by painting them gray. This means that
during transformation, the edge connected to node B and vertex C will be reserved, so to satisfy
the application requirement in Figure 7(a). Also, the size will be reduced (zoomed out).

The original RGG defines the logical relations among constructs of a graph. To support graphic
layout, it may be extended to take constraint rules [16] represented by (x, y) coordinates [22].
Doing so however would greatly limit the intuitiveness and visualization power of the RGG. In
our paper, we follow the general principle of context-sensitivity while increasing the
expressiveness, and propose a set of graph transformation rules to enhance RGG with the
capability of spatial (direction and distance) and size specifications. The enhanced RGG
formalism is consistent with the original RGG but powerful enough to be used for in a wide
range of applications, such as Web page design, graph layout, multimedia interface design and
PCB design.

5. Web Information Transformation
This section will explain the application of spatial graph grammar rules by going through two
examples graphs.

5.1. Transforming a Typical Web Drawing

Assuming a Web graph layout as shown in Figure 12(a), we will transform it to the one in Figure
12(b), which may be displayed on a limited mobile device screen such as PDA.

The graph in Figure 12(a) contains six objects: Picture, Title, Contents, Notes, Menu and Link,
which are displayed on a desktop computer screen whose horizontal dimension is usually larger
than the vertical dimension. To transform the graph objects and their connections to suit a small
screen, whose screen typically has a relatively larger vertical side and a smaller horizontal side.
Assume that the central object, Picture, will maintain its original size, while other five objects
will shrink their sizes to fit only the first letters of the object names. We now use our spatial
graph grammar to specify this kind of transformation.

The complete set of graph rewriting rules (productions) for the required transformations are
illustrated in Figure 13, that show the graph grammar defined for the type of graphs with dotted
lines excluded, and the translation mechanism from the Web graph layout to mobile display such
as a PDA screen layout when the sub-graphs (redex) with dotted lines are included. We refer to
the former rules as the grammar (representing graph layout of Web drawings), and the later,

 9

extended from the grammar, as the translator (from Web graph layout to mobile display layout)
[21].

Title Menu

T M

Picture

Picture N

Notes

Link

L

Contents C

(b) (a)

Figure 12 An example of Web graph transformation

Figure 13 shows seven rewriting rules, including 1 axiom rule (P1), 3 sets of representation rules
(P2, P3, P4), and 3 Web graph compression rules (P5, P6, P7).

Productions <2> to <4> are three sets of general representation rules. They contain a number of
variations, and are used as both the grammar and the translator.

Production <2> (P2) specifies a location change that can be applied to all the transformations. It
is an instance of transformation from the horizontal relation to the vertical relation. At the right
side, the two nodes are connected between vertex E of A and vertex W of node B. After
transformation, the two nodes are connected between A’s S vertex and B’s N vertex. Since there
are eight directions for each node, and the number of direction relations between any two nodes
is 8*8 (=64). We describe the location changes as one production that can be mirrored or
modified to suit other 63 direction relations.

Production <3 > (P3) represents a general rule on zooming. It is an instance that one node zooms
in (become smaller) yet another node’s size remains unchanged. The center of B has a “-”sign,
which means that node B should be zoomed in (shrink). Similarly, we could use a blank or “+”
sign to indicate that the node should remain unchanged in its size or be zoomed out (enlarged).
We specify the zooming changes as one production which can be modified to suit other
situations (including the change of a single node’s size and the sizes of both nodes).

The marker (gray) at a super vertex or a vertex means that: after the transformation the edge
connected to the outside of the redex will be preserved. This simple marking mechanism can
avoid ambiguities [20].

Production <4> (P4) specifies distance changes. It is an instance of shortening distance between
two nodes. In the left graph, if the two vertices connecting two nodes are both marked “-”,the

 10

distance between the two nodes should be decreased. Similarly, we use a blank and a “+” to
indicate that the distance should remain unchanged or enlarge. We describe the distance changes
in one production which can be modified to suit two other situations.

Production <5> to <7> are used to reduce the area size of Web-based graphical images (such as
shrinking the layout structure and compressing white spaces), without losing the essence of the
images.

Production <5> (P5) is used to delete a superfluous edge between two nodes. We define that only
one edge can exist between two nodes. It is obvious that a long and folded edge between two
nodes should be replaced by a short and straight edge. In Figure 14, we first apply P5 to the pair
of nodes: Notes and Link, to delete the folded edge. We then apply P4 to shorten the distance

<1>Init A

B λ :=

A

<7> Stranded nodes

<4> Shorten Distance (similar to enlarge and unchanged) <3> Zoom in (similar to zoom out and unchanged)

A

<2>Location change (horizontal to vertical)

-

:= B A
B

A

A B B

B AB- A-B AB A

B

A

B

AB- A-

A AA A

A

A

A

BB BB

B

B
B

:= :=

:=

:=

B

-

B- A-

A B

B

<5> Redundant edge

B

A

:=
B

A

A A

A

<6> fold edge between two nodes

B

Figure 13 A graph grammar for Web graph layout compression

 11

between them, and use P3 to zoom in both nodes. The number on the edge between Notes and
Link stands for the productions that applied to them.

Production <6> (P6) describes the situation that there is a folded edge between two nodes. We
will replace the folded edge by a straight edge. Productions P5, P2 and P4 describe the desired
change, which include location changes and shortened distances. We apply P6 to the following
pairs of nodes: Title-Picture, Menu-Picture and Notes-Picture.

Production <7> (P7) transforms a stranded node, which can be considered a special case of P6.
In this case, the folded edge between two nodes is longer, and the two nodes are far away from
each other. We apply P7 to the pair of nodes: Contents-Picture.

To avoid infinite applications of rules, we impose a constraint: each production can only be used
once between any pair of nodes. We will explain this later in Figure 17.

<6>, <3> <6>, <3> Title Menu

Picture

<6>, <3>
<1>

Notes

Contents<5>, <4>,
<3>

Link <7>, <3>

Figure 14 R-application of transformation formalism

The R-application in the RGG is a parsing process, which in general consists of: selecting a
production from the grammar and applying an R-application of the production to the layout, and
the process continues until no productions can be applied. If the host graph is transformed into an
initial graph, the parsing process is successful and the host graph belongs to the language defined
by the graph grammar.

5.2. Transforming an Orthogonal Graph

The content of Figure 15(a) is a typical graph that can be found in many areas such as a circuit
layout and a Web drawing. Figure 15(b) shows a graph transformed from Figure 15(a), and
becomes more compact with less white spaces than the latter. The steps of applying the
transformation rules to change from Figure 15(a) to (b) are depicted in Figure 16.

 12

2

5

6

4

3

12

1
2

3

4
12

1

6

5

11

10

7
8

9
8 7

9

10

11

(b)(a)
Figure 15 An example of graph layout transformation

Although we can apply the production rules to all the node pairs at the same time, we show the
transformation process in four steps.

In Figure 16(a), we apply P7 and P3 to nodes 12 and 4 (for simplicity, we use (12, 4) to indicate
the pair of nodes 12 and 4), P4 and P3 to node pairs (5,6), (10,11). We use a dashed rectangle to
show the node pair to which a transformation is applied, and the number stands for the
corresponding production. The result of the transformations becomes the graph in Figure 16(b).
The later steps can be similarly interpreted.

Notice the sub-graph involving three nodes (7, 8, 9) showed in Figure 16(a). The transformations
of the sub-graph are detailed in Figure 17. We first apply P6 to node pair (7, 8), transforming
from Figure 17(a) to (b); then apply P7 to (7, 9), obtaining Figure 17(c). For the graph structure
in Figure 17(c), we again apply P6 to (8, 9) to obtain Figure 17(d), which is a reflective of Figure
17(c). The area sizes of Figure 17(c) and (d) are the same. Further applying P6 will result in
cyclic transformations that are apparently undesirable. Therefore, we impose a constraint that
each production can be used only once between any pair of nodes. According this constraint,
after applying P6 to Figure 17(c) to obtain Figure 17(d), the transformation process stops.
Finally, we get the sub-graph shown in Figure 17(d). We may also apply P7 to node pair (7, 9)
first, then P6 to (7, 8), finally apply P6 to (7, 9) to obtain the result.

 13

1

1

12

3

4

6

11

10

9

875

2

(e) (d)

11

10

9

6

5

12

3

4

8
7

2
1

(c)

11

10

6

5

12

4

6,7,4,3
7

5,4,3

7,3

9

8
7

3

2
1

7

4,3 7

4,3

7,3

7,3

9

8
7

10

11

5

6

1

12
4

3

2
1

(b) (a)

Figure 16 The snapshots of the transformation process

12

3

4

6

11

10

9

87

5

2

 14

7

6

(a)

In a graph g
production w
selection will
to test other
parsing algor
path [20]. Zh

When defini
geometric rel
can be efficie
spatial specif
For example,
relations, diff
relationships.
work.

6. Conclu
This paper h
information t
location chan
types of chan
zooming rule
spatial exten
application la
graph gramm
automatic val

The set of rul
mechanism. I

• Visualiza
understand

7 8

67

8 7

9

8
8 7

Figur

rammar, general
hen multiple choi
 affect the later p
paths, which cost
ithm, called selec
ang has proved th

ng transformatio
ations, we allow
ntly handled by t
ication capability
 when defining th
erent media com
 We will show th

sion
as presented the
o suit small displ
ge, differential sc
ges, we have pr
 and distance rul
sion to explicitly
youts and transfo
ar (RGG) has po
idation on the lay

es combine the la
t offers the follow

tion. The desc
. A novice user c
9 9

(b)

e 17 Possibly cyclic tra

(c)

 difficulty in the proc
ces exist, i.e. how to p
arsing and final result,
s computational time.
tion-free parsing algo
at the time complexity

n productions for g
 only one relation betw
he original RGG form
 is sufficiently expres
e graph structure of a
ponents should also ha
e powerfulness of our

idea of applying grap
ays, such as a PDA sc
aling and semantic zo

oposed the notation of
e. We use a context-se
 and completely desc
rmation methods. The
lynomial time comple
out structure.

yout structure, differen
ing features:

ription of the page
an quickly catch the se
9

(d)

nsformations

ess of parsing is to select an appropriate
rocess ambiguities during parsing. Since the
 if the current path fails we must trace back
The RGG is equipped with a deterministic
rithm (SFPA), which only tries one parsing
 of SFPA is polynomial [18].

raph layout where edges represent only
een any pair of nodes. Such relationships

alisms. Our graph grammar formalism with
sive in specifying the multi-link relations.

multimedia document, apart from geometric
ve logical relationships and even temporal
grammar applying to this area in the future

h grammars to the transformation of Web
reen. Such transformations usually involve
oming. To graphically represent these three
 grid nodes, and three rules: location rule,
nsitive graph grammar formalism with the
ribe the syntax of a wide range of Web

 parsing algorithm of our extended reserved
xity in most cases, the parser performs an

tial scaling, semantic zooming and marking

layout can be visualized, and is easy to
mantics.

15

• Expressiveness. The grammar can express most geometrical relations. Each grid node
includes 8 directions, 3 distance relations and 3 size-changing conditions.

• Conciseness. The number of defined geometrical relations is minimum, yet powerful
enough to express many spatial relations among graph objects.

• Efficiency. The definition of the spatial specification, zooming specification and marking
mechanism can be easily embedded into a graph grammar without increasing the time
complexity of parsing.

• Adaptation. A graph layout can be transformed as will according to the defined grammar.
Graph objects can be zoomed to satisfy the user’s requirement and particular interests.

• Automation. The graph transformation tool can be automatically generated, and syntax
check and design validation are also automatically performed.

7. Future Work
The above discussion has shown that an extended RGG is promising in providing a powerful
mechanism to represent the layout structure graphically and to perform an online transformation
validation through an automatically generated parser. The context-sensitive property makes the
grammar more powerful for layout transformations than a context-free grammar. It can also be
used in other areas such as the development of multimedia interfaces, graph layout and PCB
design. We will use our graph grammar formalism to represent dynamic interactive interfaces in
the future research. More specifically, we will focus on the following topics in the future work:

More Extensions: We classify geometrical relations into three categories: distance
specification, direction specification and size specification. We will design rules for more special
relations, such as touch, overlapping and containing. We will illustrate the full use of these
extension rules to our context-sensitive graph grammars and use realistic examples to
demonstrate the conciseness and expressiveness of the extended graph grammar formalism.

Animation: Designing dynamic mobile interfaces is a hot topic, and there are great demands
for interactive communication. In the field of dynamic capture and access, authoring, the
attributes of page elements are defined in terms of those of other document elements and
attributes of the viewing environment. We will combine the time and spatial specifications
extended to our context sensitive graph grammar and explore the full power of spatial/temporal
graph grammars for PDA interface transactions.

Temporal Aspects: Allen presented some common temporal relations such as during,
before, meet relations [2], which are potentially adaptable to Web info transformations.
Temporal specifications determine the sequence of presentation. There are increasing demands
for interactively changing the detail of one part of a Web page when viewing it. Such a
mechanism is called interactive semantic zooming [11]. For example, two nodes A and B,
expand their sizes alternatively. The viewing interface is changed dynamically. We will
investigate how to equip our GG with temporal specification capability.

 16

References:
[1] G. D. Abowd and E. D. Mynatt, Charting Past, Present, and Future Research in Ubiquitous

Computing, ACM Transactions on Computer-Human Interaction, Vol.7, No.1, March 2000, 29–58.

[2] J. F. Allen, Maintaining Knowledge About Temporal Intervals, Communications of the ACM
Vol.26, No.11, 1983, 832 – 843.

[3] G. Di Battista, P. Eades, R. Tamassia and I. G. Tollis, Graph Drawing Algorithms for the
Visualization of Graphs, Prentice Hall, Engle wood Cliffs, NJ, 1999.

[4] O. W. Bertelsen and C. Nielsen, Augmented Reality as a Design Tool for Mobile Interfaces. Proc.
ACM DIS ’00 Conference, Brooklyn, New York, Aug. 2000.

[5] S. Bjork, J. Redstrom, P. Ljungstrand and L.E. Holmquist, PowerView Using Information Links and
Information Views to Navigate and Visualize Information on Small Displays, P.Thomas and H.-W.
Gellersen (Eds.): Proc. HUC’2000, 2000, 46-62.

[6] O. Buyukkokten, H. Garcia-Molina and A. Paepcke, Text Summarization of Web Pages on
Handheld Devices. Proc. Workshop on Automatic Summarization 2001, Pittsburgh, PA, June 2001.

[7] E. J. Golin, A Method for the Specification and Parsing of Visual Languages, Ph.D. Thesis, Brown
Univ., May 1991.

[8] I. Herman, G. Melançon and M. S. Marshall, Graph Visualization and Navigation in Information
Visualization, IEEE Transactions on Visualization and Computer Graphics, Vol.6, No.1, 2000. 24-
43.

[9] M. Kaul, Parsing of Graphs in Linear Time, Proc. 2nd Int. Workshop on Graph Grammars and Their
Application to Computer Science, LNCS 153, 1982, 206-218.

[10] J. Mankoff, G. D. Abowd and S. E. Hudson, OOPS: A Toolkit Supporting Mediation Techniques
for Resolving Ambiguity in Recognition-Based Interfaces, Computers and Graphics (El.), SICI.
Vol.24, No.6, December, 2000. 819-834.

[11] K. Marriott, B. Meyer, and L.Tardif, Fast and Efficient Client-Side Adaptability for SVG, Proc.
WWW 2002, May 7-11, Hawaii, USA, 2002, 496-507.

[12] B. A. Myers, Authoring Interactive Behaviors for Multimedia, Proc. 9th NEC Research Symposium,
Nara, Japan, Aug-Sep, 1998.

[13] M. Pimental, G. Abowd, and Y. Ishiguro, Linking by Interacting: A Paradigm for Authoring
Hypertext and Hypermedia, CACM, May 2000, 39-48.

[14] G. Rozenberg and E. Welzl, Boundary NLC Graph Grammars – Basic Definitions, Normal Forms,
and Complexity, Information and Control, 69, 1986, 136-167.

[15] J. M. Six, K. G. Kakoulis and I. G. Tollis, Techniques for the Refinement of Orthogonal Graph
Drawings, Journal of Graph Algorithms and Applications. Vol.4, No.3, 2000, 75-103.

[16] M. Minas and G. Viehstaedt, Specification of Diagram Editors Providing Layout Adjustment with
Minimal Change, Proc. 1993 IEEE Symposium on Visual Languages, 1993, 324-329.

[17] L. M. Wills, Automated Program Recognition by Graph Parsing, Ph.D. Thesis, MIT AI Lab, 1992.

[18] D. Q. Zhang, Generation of Visual Programming Languages, Ph.D. Thesis, Macquarie University,
1998.

 17

http://portal.acm.org/citation.cfm?id=332470&dl=GUIDE&coll=GUIDE&CFID=4805762&CFTOKEN=36412625

[19] K. Zhang, D. Q. Zhang, and J. Cao, Design, Construction and Application of a Generic Visual
Language Generation Environment, IEEE Trans. on Software Engineering, Vol.27 No.4, April
2001, 289-307.

[20] D. Q. Zhang, K. Zhang, and J. Cao, A Context-sensitive Graph Grammar Formalism for the
Specification of Visual Languages, The Computer Journal, Vol.44, No.3, 2001, 186-200.

[21] K. Zhang, D. Q. Zhang, and Y. Deng, Graphical Transformation of Multimedia XML Documents,
Annals of Software Engineering, 12, 2001, 119-137.

[22] K. B. Zhang and K. Zhang, An Incremental Approach to Graph layout Based on Grid Drawing,
Proceedings of the Third Workshop on Software Visualization (SoftVis’99), University of
Technology, Sydney. December 3-4, 1999.

 18

	1. Introduction
	2. Related Work
	2.1. Text Summarization:
	2.2. Graph Compression
	2.3. Dynamic Interfaces
	2.4. Graph Transformation:

	3. Spatial Abstraction for Graphical Layout
	4. A Graph Grammar
	5. Web Information Transformation
	5.1. Transforming a Typical Web Drawing
	5.2. Transforming an Orthogonal Graph

	6. Conclusion
	7. Future Work
	References:

