EE640 SPRING 2008

STOCHASTIC SYSTEMS

INFORMATION

 

Updated 4-22-08


Class syllabus

Class Schedule

VISUALIZAIONS

Stationary Colored Noise

Non-Stationary Colored Noise


PROJECTS


PROJECT 1A:

PART A: SYNTHESIS (EE640_Project_1A08.pdf)

Target Data: Target.zip

Clutter Data: Clutter.zip


PROJECT 1B:

PART B: ANALYSIS (EE640_Project1_B08.pdf)


PROJECT 1C:

PART C: DETECTION AND DISCRIMINATION (EE640_Project1_C08.pdf)


PROJECT 1S: Supplemental (Won’t be used for 2008)

PART S: Supplemental:EE640_Project_1S.pdf


Journal References for project 1


VISUALIZAIONS (not updated from 2005 yet)

Example of Stationary Colored Noise versus a non-stationary image, both having same PSD

Data Whitening and the Covariance Matrix


LECTURE NOTES

 

Lecture 12: RANDOM PROCESSES

Lecture 13: R.P.: TYPES OF STATIONARITY

Lecture 13 Example: Quantization Noise Model

Lecture 14: R.P.: POWER SPECTRAL DENSITY, AUTOCORRELATION AND MEAN SQARE CALCULAS

Lecture 15: LINEAR TIME-INVARIANT STOCHASTIC SYSTEMS

Lecture 16: STOCHASTIC SERIES EXPANSION

Lecture 17:DETECTION AND DISCRIMINATION

Lecture 18: OPTIMUM DECISION BOUNDARIES

Lecture 19: TYPES OF DECISION BOUNDARIES

Lecture 20: MULTI-VARIANT MLR

Lecture 21: QUADRATURE MODULATION AND DEMODULATION

Lecture 22: SIGNAL SPACE DECISION BOUNDARIES     

Lecture 23: OPTIMUM DETECTION FILTER BANKS     

Lecture 24: DETECTION FILTER PERFORMANCE MEASURES     

Lecture 25: ESTIMATION OF PROBABILITY DENSITY FUNCTION     

Lecture 26: ESTIMATION, MINIMUM MEAN SQUARED ERROR     

Lecture 27: ESTIMATION, MAXIMUM LIKELIHOOD     

Lecture 28: STOCHASTIC FILTER PREDICTORS     

Lecture 29: MINIMUM AVERAGE CORRELATION ENERGY FILTER DERIVATION