QMF Analysis and Synthesis Design

Consider the two-channel QMF bank:

\[x[n] \xrightarrow{\text{analysis}} x_{a0} \xrightarrow{H_0(z)} x_{o0} \xrightarrow{\downarrow 2} \hat{x} \]

\[x_{a1} \xrightarrow{H_1(z)} \xrightarrow{\downarrow 2} x_{o1} \xrightarrow{G_1(z)} \downarrow 2 \xrightarrow{\text{synthesis}} \hat{x}[n] \]

We would like to design the analysis and synthesis so that:
\[\hat{x}[n] = x[n-T] \] where \(T \) is latency.

Consider first the DFT formulation:

\[X_{a_0}(e^{j\omega}) = \frac{1}{2} \left[X(e^{j\omega/2}) H_0(e^{j\omega/2}) + X(e^{j(\omega-2\pi)/2}) H_0(e^{j(\omega-2\pi)/2}) \right] \]

see Eq. 11.2.13

\[X_{a_1}(e^{j\omega}) = \frac{1}{2} \left[X(e^{j4\omega/2}) H_1(e^{j\omega/2}) + X(e^{j(\omega-2\pi)/2}) H_1(e^{j(\omega-2\pi)/2}) \right] \]

(aligning)
The output of the synthetic section has

\[\hat{X}(e^{j\omega}) = \hat{X}_{a0}(e^{j\omega})G_0(e^{j\omega}) + \hat{X}_{a1}(e^{j\omega})G_1(e^{j\omega}) \]

Now substitute \(\hat{X}_{a0}(\cdot) = \hat{X}_{s0}(\cdot) \), \(\hat{X}_{a1}(\cdot) = \hat{X}_{s1}(\cdot) \)

\[\hat{X}(e^{j\omega}) = \frac{1}{2} \left[H_0(e^{j\omega})G_0(e^{j\omega}) + H_1(e^{j\omega})G_1(e^{j\omega}) \right] \hat{X}(e^{j\omega}) \]

\[+ \frac{1}{2} \left[H_0(e^{j(-\omega-n)})G_0(e^{j\omega}) + H_1(e^{j(-\omega-n)})G_1(e^{j\omega}) \right] \hat{X}(e^{j(\omega-n)}) \]

The z-transform

\[\hat{X}(z) = \frac{1}{2} \left[H_0(z)G_0(z) + H_1(z)G_1(z) \right] \hat{X}(z) \]

\[+ \frac{1}{2} \left[H_0(-z)G_0(z) + H_1(-z)G_1(z) \right] \hat{X}(-z) \]

\[= G(z) \hat{X}(z) + A(z) \hat{X}(-z) \]
We would like \(A(z) = 0 \) s.t.
\[
H_0(-z)G_0(z) + H_1(-z)G_1(z) = 0
\]

In the DT frequency domain
\[
H_0(e^{j\omega} - \pi)G_0(e^{j\omega}) + H_1(e^{j(\omega-\pi)})G_1(e^{j\omega}) = 0
\]

This condition can be satisfied by
\[
G_0(e^{j\omega}) = H_1(e^{j(\omega-\pi)}) \quad \text{and} \quad G_1(e^{j\omega}) = -H_0(e^{j\omega})
\]

low part

\[
\text{high part}
\]

where \(H_0(e^{j\omega}) \) is LP and \(H_1(e^{j\omega}) \) is HP.

Since they are "mirror" filters
\[
H_0(e^{j\omega}) = H(e^{j\omega}) \quad \text{and} \quad H_1(e^{j\omega}) = H(e^{j(\omega-\pi)})
\]

so \(G_0(e^{j\omega}) = H_0(e^{j\omega}) \) and \(G_1(e^{j\omega}) = -H_1(e^{j\omega}) \)
31

In z-plane

\[H_0(z) = H(z), \quad H_1(z) = H(-z) \]

\[G_0(z) = H_0(z) \quad \text{and} \quad G_1(z) = -H_1(z) \]

Condition for perfect Reconstruction

\[\hat{X}(n) = x(n-k) \]

We have \(A(z) = 0 \) but we require

\[Q(z) = \frac{1}{2} \left[H_0(z) G_0(z) + H_1(z) G_1(z) \right] = z^{-k} \]

such that \(H(z) - H^2(-z) = 2z^{-k} \)

or in DFT

\[H^2(e^{j\omega}) - H^2(e^{j(\omega - \pi)}) = 2e^{-j\omega k} \]

Then

\[|H^2(e^{j\omega}) - H^2(e^{j(\omega - \pi)})| = C = 2 \quad \text{then} \quad \hat{X}(n) = X(n-k) \]

If \(H(e^{j\omega}) \) satisfies the magnitude condition and has linear phase

Then \(\hat{X}(n) = X(n-k) \). But there could be a solution without linear phase.