The DFT requires a finite length sequence \(x[n] \) of length \(N \). The analogy is to take a DFT of a periodic signal \(x[n] = x[n+N] \) and sample the discrete Fourier coefficients \(X[k] \) for \(k = 0, 1, 2, \ldots, (N-1) \) resulting in a periodic signal \(X[k+N] = X[k] \). We have periodicity in both domain and both domains.
To show that

That is

\[X_5(t) = \text{rect} \left(\frac{t - NT_s/2}{NT_s} \right) x(t) \leq x(t - nT_s) \]

where \(NT_s \) is the window width.
\[X_s(t) = \text{rect}(t) \sum_{h=0}^{N-1} x[n] \delta(t - nT_s) \]

CTFT of \(X_s(t) \)

\[\mathcal{X}_s(f) = \int_{-\infty}^{\infty} X_s(t) e^{-j2\pi ft} dt = \sum_{h=0}^{N-1} x[n] e^{-j2\pi fnT_s} \]

Now let's sample the frequency values at

\[f = \frac{k}{NT_s} \text{ for } k = 0, 1, \ldots, N-1 \]
\[X[k] = X \left(\frac{\theta_k}{NT_0} \right) = \sum_{h=0}^{N-1} x[h] e^{-j2\pi \frac{k}{N} h} \]

\[x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j2\pi \frac{kn}{N}} \quad \text{inverse DFT} \]

Matrix form of DFT

We rewrite the DFT as

\[X[k] = \sum_{h=0}^{N-1} x[h] W_N^{kh} \quad \text{for } k = 0, 1, \ldots, (N-1) \]

and

\[x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn} \quad \text{where } W_N = e^{-j\frac{2\pi}{N}} \]
\[W_N^k = e^{-\frac{j}{2} \pi \frac{k}{N}} \]

Let the vector \(\hat{x} = [x_0 \ x_1 \ \ldots \ x_{N-1}]^T \)

\(\hat{x} = [x_0 \ x_1 \ \ldots \ x_{N-1}]^T \)

Let \(\Phi_k = [W_N^0 \ W_N^1 \ W_N^{2k} \ \ldots \ W_N^{(N-1)k}]^T \)

\(\Phi = \begin{bmatrix} \Phi_0 & \Phi_1 & \cdots & \Phi_{N-1} \end{bmatrix} \)

\(\Phi^T \Phi \) matrix

It can be shown \(\Phi^T = \Phi \) and \(\Phi^{-1} = \frac{1}{N} \Phi^* \)

By using \(\Phi_k \Phi_m = \sum_{n=0}^{N-1} e^{-\frac{j}{2} \pi \frac{(k-m)n}{N}} = N \delta_{k-m} \)

We can write \(\hat{x}^T = \frac{1}{\Phi} x \Rightarrow \hat{x} = \Phi x \)
The DFT is

\[X = \frac{1}{N} \Phi^* \hat{X} \]