EE 511 Course Syllabus

Introduction to Communication Systems

August 22, 2012

Instructor: Laurence Hassebrook
Email: lgh@engr.uky.edu
URL: http://www.engr.uky.edu/~lgh/
Office/Phone/email: 229 Davis Marksbury Building/ (859) 257-8040 / lgh@engr.uky.edu
(put EE511 in subject)
Lab: 209 CRMS Bldg.
Office hours: 3:00 pm to 4:00 pm Monday (209 CRMS lab), Wednesday (209 CRMS lab)
and Friday (209 CRMS lab or 219 Marksbury)
TA:

Class Hours and Location: 11:00am-11:50am MWF, 203 RGAN.

Course is compliant with Departmental Baseline EE511 Syllabus:

Outcomes

Students completing this course should demonstrate the:

1. Ability to analyze basic communication systems involving random signals, filtering,
sampling, and modulation.
2. Ability to design basic communication systems.
3. Ability to describe the reasoning behind design decisions.

Class Content and Objective:

The content of "Communication Systems" represents the basic knowledge necessary
for transmitting and receiving information using today's communication technologies. The
techniques that will be studied involve coding information onto a carrier (modulation) which
is then transmitted. The received signal is then decoded (demodulated) yielding the original
information. Emphasis will be given to analog modulation of both analog and digital signals.

This course will cover the concepts associated with the Fourier transform, active
filtering, spectral analysis, sampling theory and signal modulation/demodulation. Filter
design will include active higher order bandpass, lowpass, highpass and linear phase
filtering. Matched filtering and quadrature detection for binary demodulation will be studied.
Sampling theory will cover impulse, natural and sample and hold types of sampling design.
The modulation techniques covered will include Amplitude Modulation (AM), Frequency
Modulation (FM), Time-Division Modulation (TDM) and Frequency Shift Keying (FSK).
Time permitting, additional material on scalar wavefront models will be introduced and applied to beam forming of acoustic, electromagnetic and coherent (laser) light waves. Homework will be in the form of problem sets and MATLAB based visualizations or tutorials. Emphasis will be placed on chapter 2, Signal and Linear Systems, and chapter 3, Basic Modulation Techniques. There will be selected material from chapter 4, Principles of Baseband Digital Data Transmission and other chapters as time permits.

Grading Policy:

- Homework: 20%: Once a week, Due one week after assignment, No late homework, drop the lowest 1. Assignments may include MATLAB visualizations.
- Exam 1: 20% (Date to be announced, closed book, 1 page crib sheet).
- Exam 2: 20% (Date to be announced, open book).
- Exam 3: 20% (Friday before Dead Week, open book).
- Project A and Final Project: 20% Team MATLAB Simulations (Due Wednesday of Finals Week, 9pm, 12/12/12). Project A=5% and final project = 15%
- In accordance with SACS Recommendation 10 in the Provost memo dated March 12, 2004, graduate students will have a different grade scale then undergraduate students.

Reference:

10. An Introduction to Analog & Digital Communications by Simon Haykin.

Equipment Required: Access to MATLAB, email and the web.

Infrastructure Required: The students will be required to obtain computer accounts to enable them to communicate with email (probably ewl), run MATLAB (probably ewl) and read web pages. For home access, the students may want to get special accounts (probably pop). Communications to the students will be done by the EE511 web page and also through the EE511 email list. Individual correspondence by email will be encouraged.