The DSBSC is redundant.

Consider the concept of SSBSC where we start with a DSBSC signal.
where \(S_{DSB}(t) \) = \(S\cdot DSB(t) \)**hLPF(-k)** where hLPF(t) = hL5(t) wherein hL5(t) = 0 when t < 0.5, hL5(t) = \(\frac{1 - 2 \cdot \sin(\pi \cdot t \cdot f_s)}{\pi \cdot t \cdot f_s} \) when 0.5 < t < 1, and hL5(t) = 0 when t > 1.
Generate a SSB modulated signal using an intermediate frequency given \(m(t) \) s.t. \(M(f) = \frac{1}{2} s.s. B(0) \)
An intermediate signal is generated as
\[s_i(t) = \cos(2\pi f_i t) \] where \(f_i > B \)

The first step is
\[S_{ssB}(\omega) = (m(t) \cos 2\pi f_i t) * h_{LS}(\omega) \]
We would like to freeze SSB to

\[f_2 + f_c \approx f_c \text{ for } f_2 \approx f_c \text{ in the intermediate SSB} \]

\[\Sigma(t) = \left(S_{SB}(t) \cos 2\pi t f_c \right) \star h_{L32}(t) \]

\[\frac{\Sigma(t)}{\Sigma} \stackrel{z}{\approx} \frac{S(t - f_c)}{S(t)} \]

We located at \(f_c \)}
NOTE: In practice an additional offset is implemented such that...
Demodulate SSB using IF

\[S_{SSB}(f) \]

Let the lower side \(f_{LO} < f_c \)

\[S_{SSB}(t) \xrightarrow{\times} H_{LP}(f) \]

\[H_{LP}(f) \]

Let \(f_I = f_c - f_{LO} \)

\[f_{LO} = f_c - f_I \]