Modal voltages and micro-signal analysis of conical shells of revolution

H.S. Tzou*, W.K. Chai, D.W. Wang

Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40506-0108, USA

Received 29 January 2001; accepted 28 April 2002

Abstract

Conical shells and components are widely used as nozzles, injectors, rocket fairings, turbine blades, etc. Dynamic and vibration characteristics of conical shells have been investigated over the years. In this paper, micro-electromechanics and distributed sensing phenomena of a generic double-curvature shell and a conical shell are discussed, and governing sensing signal-displacement equations are derived. Spatially distributed modal voltages and micro-signal generations of conical shells laminated with distributed piezoelectric sensor layers are investigated based on the Donnel–Mushtari–Vlasov theory. Distributed modal voltages and their various signal components of two conical shells reveal that the dominating signal component among the four contributing micro-signal components is the circumferential membrane component. This dominance is even more significant for lower shell modes and/or deep shells. In general, high strain regions result in high signal magnitudes. Accordingly, the spatially distributed signal patterns—the modal voltages—clearly represent the modal dynamic and micro-strain characteristics of conical shells.

1. Introduction

Jet nozzles, injectors, blades, rocket fairings, etc. in turbomachinery, aerospace structures, micro-electromechanical systems, etc. are often made of conical shell structures and components. Dynamics and vibrations of conical shell structures have been investigated over the years [1–10]. However, distributed sensing and control of conical shells have not been thoroughly investigated [11]. This study is to investigate the dynamic sensing characteristics, micro-signal generations, and distributed modal voltages of truncated conical shell sections.

*Corresponding author. Tel.: +1-606-257-2766; fax: +1-606-257-3304.
E-mail address: hstzou@engr.uky.edu (H.S. Tzou).
Recent development in smart structures and structronic systems has explored many new measurement and control techniques using smart materials [12,13]. Among the popular smart materials (e.g., piezoelectrics, electro- and magneto-strictive materials, shape memory materials, photostrictive materials, pyroelectric materials, electro- and magneto-rheological fluid, etc.), piezoelectric materials provide bi-directional sensing and control capability and thus it becomes one of the best candidates in both distributed sensing and control applications. Unlike conventional discrete sensors, thin piezoelectric layers can be spatially spread and distributed over the surfaces of shells and plates. Accordingly, these distributed piezoelectric layers can serve as distributed neurons and actuators in sensing and control of shells and plates [14,15].

Spatially distributed sensing signal generations of a distributed piezoelectric sensor layer laminated on a generic double-curvature elastic shell are discussed first. The generic sensing signal equation is derived based on the direct piezoelectric effect, the Gauss theory, the open-circuit assumption, the Maxwell equation, and also the generic double-curvature thin shell theory. Detailed micro-electromechanical characteristics resulting from various meridional and circumferential membrane/bending strain components are evaluated and applied to conical shells. Final closed-form sensing signal of distributed conical shell sensors is then defined based on given boundary conditions and mode shape functions in the Donnell–Mushhtari–Vlasov theory. Spatially distributed modal voltages, micro-signal components and modal sensing signals in both longitudinal and circumferential directions of two conical shells are thoroughly evaluated in case studies.

2. Generic shell sensing equation

It is assumed that a distributed piezoelectric sensor layer is laminated on a double-curvature generic elastic shell. The distributed sensing layer generates electrical signals, resulting from shell micro-strain variations, and the signal amplitude $\phi$ is a function of piezoelectric (displacement) constant $h_{ij}$ and induced strains $S_{ji}^S$ in the sensor layer [15],

$$
\phi = \frac{h^s}{S^s} \int_{\tau_1}^{\tau_2} \int_{\sigma_2}^{1} \left( h_{31} S_{11}^i + h_{32} S_{22}^i - h_{36} S_{12}^i \right) A_1 A_2 \, dz_1 \, dz_2, \tag{1}
$$

where the superscript 's' denotes the distributed sensor layer, $h^s$ is the sensor thickness, $S^s$ is the surface area of the sensor layer, $\tau_1$ and $\tau_2$ are the two principle directions in the generic shell continuum, $A_1$ and $A_2$ are the Lamé parameters, $h_{31}$, $h_{32}$ and $h_{36}$ are the piezoelectric (displacement) constants. Note that the generic sensing signal equation is derived based on the direct piezoelectric effect, the Gauss theory, the open-circuit assumption, the Maxwell equation, and also the generic double-curvature thin shell theory [16]. The effects of transverse shear and normal strains (i.e., $S_{13}$, $S_{23}$ and $S_{33}$) are neglected. This is due to the deformation variation is small in the $\tau_3$ direction, provided the shell structures is thin. Moreover, the strain terms in the sensing equation consist of the membrane strain and the bending strain components:

$$
S_{11}^i = s_{11}^i + r_{11} k_{11}, \quad S_{22}^i = s_{22}^i + r_{22} k_{22}, \quad S_{12}^i = s_{12}^i + r_{12} k_{12}, \tag{2-4}
$$

where $r_{11}$, $r_{22}$, and $r_{12}$ denote the sensor location away from the neutral surface of the shell and $r_{ij} = r_{ij} - r_{ij}^0$ for shell and sensor layer with uniform thickness. The $k_{ij}$ terms combined with $r_{11}$, $r_{22}$, and $r_{12}$ denote the bending strains; $s_{ij}^i$ denotes the membrane strains. (Note that the strains are
denoted \( s'_{11} \equiv s'_{1} \), \( s'_{22} \equiv s'_{2} \), \( s'_{12} \equiv s'_{6} \), \( k_{11} \equiv k_{1} \), \( k_{22} \equiv k_{2} \) and \( k_{12} = k_{6} \) for simplicity.) Detailed membrane and bending strains (\( s'_{i} \) and \( k_{i} \)) in the sensor layer bonded on a non-linear shell with the von-Karmon geometric non-linearity are expressed as functions of displacements \( u_{i} \)'s, the Lamé parameters \( (A_{1} \text{ and } A_{2}) \), and two radii of curvature \( (R_{1} \text{ and } R_{2}) \) [17].

\[
\begin{align*}
    s'_{1} & = \frac{1}{A_{1}} \frac{\partial u_{1}}{\partial z_{1}} - u_{2} \frac{\partial A_{1}}{A_{1} A_{2}} \frac{\partial x_{2}}{\partial z_{1}} + \frac{u_{3}}{2} \left( \frac{\partial u_{1}}{\partial z_{1}} \right) \left( \frac{\partial u_{1}}{\partial z_{1}} \right), \\
    s'_{2} & = \frac{1}{A_{2}} \frac{\partial u_{2}}{\partial z_{2}} + u_{1} \frac{\partial A_{2}}{A_{1} A_{2}} \frac{\partial x_{1}}{\partial z_{2}} + \frac{u_{3}}{2} \left( \frac{\partial u_{2}}{\partial z_{2}} \right) \left( \frac{\partial u_{2}}{\partial z_{2}} \right), \\
    s'_{6} & = \frac{1}{A_{2}} \frac{\partial u_{1}}{\partial z_{2}} - \frac{1}{A_{1}} \frac{\partial u_{2}}{\partial z_{1}} - u_{2} \frac{\partial A_{2}}{A_{1} A_{2}} \frac{\partial x_{1}}{\partial z_{2}} + \frac{u_{3}}{2} \left( \frac{\partial u_{1}}{\partial z_{2}} \right) \left( \frac{\partial u_{2}}{\partial z_{1}} \right), \\
    k_{1} & = \frac{1}{A_{1}} \frac{\partial}{\partial z_{1}} \left( \frac{u_{1}}{R_{1}} - \frac{\partial u_{3}}{A_{1} \partial z_{1}} \right) + \frac{1}{A_{1} A_{2}} \left( \frac{u_{2}}{R_{2}} - \frac{\partial u_{3}}{A_{2} \partial z_{2}} \right) \frac{\partial A_{1}}{\partial z_{1}}, \\
    k_{2} & = \frac{1}{A_{2}} \frac{\partial}{\partial z_{2}} \left( \frac{u_{1}}{R_{1}} - \frac{\partial u_{3}}{A_{2} \partial z_{2}} \right) + \frac{1}{A_{1} A_{2}} \left( \frac{u_{2}}{R_{1}} - \frac{\partial u_{3}}{A_{1} \partial z_{1}} \right) \frac{\partial A_{2}}{\partial z_{2}}, \\
    k_{6} & = \frac{1}{A_{2}} \frac{\partial}{\partial z_{2}} \left( \frac{u_{1}}{R_{1}} - \frac{\partial u_{3}}{A_{2} \partial z_{2}} \right) - \frac{1}{A_{1}} \frac{\partial}{\partial z_{1}} \left( \frac{u_{1}}{R_{2}} - \frac{\partial u_{3}}{A_{1} \partial z_{1}} \right) \frac{\partial A_{2}}{\partial z_{2}} - \frac{1}{A_{1} A_{2}} \left( \frac{u_{2}}{R_{2}} - \frac{\partial u_{3}}{A_{2} \partial z_{2}} \right) \frac{\partial A_{1}}{\partial z_{1}}.
\end{align*}
\]

Note that the quadratic terms (non-linear terms) inside the brackets of membrane strains are contributed by the large deflection, which are neglected in linear shells. Substituting the linear strain-displacement relations, Eqs. (5)-(10), into the generic signal equation, Eq. (1), yields the signal-displacement equation of a generic distributed shell sensor [14]:

\[
\begin{align*}
\phi' = & \left( \frac{\rho}{S'_{11}} \right) \int_{t_{1}}^{t'} \int_{x_{1}}^{x'_{1}} \left\{ h_{11} \left\{ \frac{1}{A_{1}} \frac{\partial u_{1}}{\partial z_{1}} + u_{2} \frac{\partial A_{1}}{A_{1} A_{2}} \frac{\partial x_{2}}{\partial z_{1}} - \frac{u_{3}}{2} \left( \frac{\partial u_{1}}{\partial z_{1}} \right) \left( \frac{\partial u_{1}}{\partial z_{1}} \right) \right\} \\
+ & h_{21} \left\{ \frac{1}{A_{2}} \frac{\partial u_{2}}{\partial z_{2}} + \frac{u_{1}}{A_{1}} \frac{\partial A_{2}}{A_{1} A_{2}} \frac{\partial x_{1}}{\partial z_{2}} + \frac{u_{3}}{2} \left( \frac{\partial u_{2}}{\partial z_{2}} \right) \left( \frac{\partial u_{2}}{\partial z_{2}} \right) \right\} \right\} d z_{1} d z_{2},
\end{align*}
\]
This signal equation is generic that can be simplified to account for many standard geometries, e.g., spherical shells, conical shells, paraboloidal shells, plates, etc., by using two Lamé parameters and two radii of curvature of the geometry [16].

3. Distributed sensing of linear conical shell

Application of the generic shell signal equation to specific geometries requires two Lamé parameters and two radii of curvature defined for the geometries. The Lamé parameters, radii of curvature, and principle directions of conical shells are, respectively, defined by $A_1 = 1$, $A_2 = x \sin \beta^*$, $R_1 = R_x = \infty$, $R_2 = R_y = x \tan \beta^*$, $z_1 = x$, and $z_2 = \psi$. Fig. 1 illustrates a conical shell and its parameters. Assume there is a distributed piezoelectric sensor layer laminated on the conical shell and the sensor layer is insensitive to the in-plane twisting $S_{12}$. The signal strain relation of the distributed conical shell sensor layer becomes

$$
\phi^s = \left( \frac{h^*}{S^*} \right) \int_\psi \int_x \left( h_{31} S_{33}^* + h_{12} S_{12}^* \right) x \sin \beta^* \, dx \, d\psi.
$$

(12)

![Fig. 1. Conical shell of revolution.](image)
where the strain terms are \( S_{x} = s_{xx} + r_{x} k_{xx} \) and \( S_{xy} = s_{xy} + r_{y} k_{xy} \). The membrane strain-displacement relations of the linear conical shell are

\[
\begin{align*}
\varepsilon_{xx} &= \frac{\partial u_x}{\partial x} \quad \text{and} \quad \varepsilon_{yy} = \frac{1}{x \sin \beta} \frac{\partial u_y}{\partial \psi} + \frac{u_y}{x} - \frac{u_x}{x \tan \beta}, \\
\varepsilon_{xy} &= \frac{1}{x^2 \sin \beta \cos \beta} \frac{\partial u_y}{\partial \psi} - \frac{1}{x \partial \psi}.
\end{align*}
\] (13, 14)

According to the Donnell–Mushtari–Vlasov theory, the in-plane displacements \( u_x \) and \( u_y \) are usually neglected in the bending strains. Thus, the bending strains of the conical shell with the Donnell–Mushtari–Vlasov assumptions are

\[
k_{xx} = -\frac{\partial^2 u_x}{\partial x^2} \quad \text{and} \quad k_{xy} = \frac{1}{x^2 \sin \beta} \frac{\partial^2 u_y}{\partial \psi^2} - \frac{1}{x \partial \psi}.
\] (15, 16)

Substituting all strain–displacement relations into the sensing signal equation gives the signal displacement expression of the generic distributed conical shell sensor,

\[
\phi = \left(\frac{h}{S} \right) \int_{x_1}^{x_2} \int_{\phi_1}^{\phi_2} \left[ h_{xx} \left( \frac{\partial u_x}{\partial x} \right) + h_{xy} \left( \frac{1}{x \sin \beta} \frac{\partial u_y}{\partial \psi} + \frac{u_y}{x} - \frac{u_x}{x \tan \beta} \right) \right] \sin \beta \, dx \, d\psi.
\] (17)

Note that this signal–displacement equation is only valid for linear conical shell sensors, since it does not involve any large deformation effect. Detailed modal contributions to the signal outputs of the distributed conical shell sensor are discussed next.

4. Modal voltages of conical shells

Distributed sensing characteristics are mode dependent. Distributed modal voltages and microsignal generations of linear conical shells are discussed in this section. Consider a truncated conical shell section with free free boundary conditions at the top and bottom perimeters and it is laminated with distributed piezoelectric sensor layers. Fig. 2. Thus, there is no shear force and moment at the free boundaries, i.e., at \( x = x_1 \) and \( x_2 \):

\[
N_{xx} = N_{xy} = 0, \quad N_{xy} = 0.
\] (18, 19)

\[
\frac{1}{x} \left[ \frac{\partial}{\partial x} (x M_{xx}) - M_{\phi\phi} - 2 \frac{\partial^2 M_{xy}}{\partial \psi^2} \csc^2 \beta \right] = \frac{1}{x} \left[ x Q_{xx} - x \csc \beta \frac{\partial^2 M_{xy}}{\partial \psi^2} \right] = 0,
\] (20)

\[
M_{xx} = M_{\phi\phi} = 0.
\] (21)

The assumed modal displacement solutions for the free-free truncated conical shell of revolution are [3]

\[
u_{x} = U_{\text{uc}}(x) \cos m \psi \sin \omega t, \quad \nu_{y} = U_{\text{um}}(x) \sin m \psi \sin \omega t, \quad \nu_{z} = U_{\text{ud}}(x) \cos m \psi \sin \omega t,
\] (22–24)

where \( m \) is the wave number and \( m = 2 \ldots \infty \), \( \omega \) is the natural frequency, \( U_{\text{ub}}(x) \), \( U_{\text{um}}(x) \) and \( U_{\text{ud}}(x) \) are arbitrary displacement functions of \( x \), satisfying the displacement boundary conditions. (Note that it is a rigid-body mode when \( m = 1 \).) \( U_{\text{uc}}(x) \cos m \psi \) is the longitudinal
Fig. 2. Truncated conical shell section with free-free boundary conditions.

Fig. 3. Truncated conical shell section.
mode shape function. $U_{pm}(x)\sin m\psi$ is the circumferential mode shape function, and $U_{3m}(x)\cos m\psi$ is the transverse mode shape function within the Donnel-Mushtari-Vlasov theory. In free vibration analysis, the displacement function is chosen as $(x_2/x_1)^p$ defined in a polynomial form where “$p$” is the power of the polynomial function and $x_2$ is the (longitudinal) length from the apex to the bottom perimeter (Fig. 2). The polynomial form of displacement functions is chosen as to represent the flexibility of the shell structure in the longitudinal direction, since the structure is completely free. Higher-degree polynomial functions of $U_{pm}(x)$, $U_{pm}(x)$ and $U_{3m}(x)$ usually improve the analysis accuracy, especially for natural frequencies of higher circumferential modes. The generic micro-signal equation requires the spatial mode shape functions, not the

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Definitions of the two conical shell models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model 1</td>
</tr>
<tr>
<td>Conical shell half-angle $\beta^\prime$ (deg.)</td>
<td>14.24</td>
</tr>
<tr>
<td>Major radius, $R$ (in)</td>
<td>6.07</td>
</tr>
<tr>
<td>Minor radius, $r$ (in)</td>
<td>2.72</td>
</tr>
<tr>
<td>Length, $L$ (in)</td>
<td>3.2</td>
</tr>
<tr>
<td>Thickness (in)</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Fig. 4. Signal components and modal voltage of (1,2) mode, Model 1. (a) $s_{\phi\phi}$: the longitudinal membrane signal; (b) $s_{\psi\psi}$: the circumferential membrane signal; (c) $s_{\psi\psi}$: the circumferential bending signal; and (d) [1,2]: the (1,2)th modal voltage.
temporal part in the original displacement functions. Eliminating the temporal part and substituting three spatial mode shape functions into the sensing signal equation yields the $m$th modal signal expression $(\phi^s)_{m,\psi}$,

$$
\phi^s = (\phi^s)_{m,\psi} = \left(\frac{h^r}{S^r}\right) \int_S \int_{\phi} \left\{ h_{31} \left[ \frac{\partial U_{m,\psi}(x) \cos m \psi}{\partial x} + r_x \left( -\frac{\partial^2 U_{m,\psi}(x) \cos m \psi}{\partial x^2} \right) \right] \\
+ h_{32} \left[ \frac{m U_{m,\psi}(x) \cos m \psi}{x \sin \beta_x} + \frac{U_{m,\psi}(x) \cos m \psi}{x} - \frac{U_{m,\psi}(x) \cos m \psi}{x \tan \beta_x} \right] \\
+ r_x \left( \frac{m^2 U_{m,\psi}(x) \cos m \psi}{x^2 \sin^2 \beta_x} - \frac{1}{x} \frac{\partial U_{m,\psi}(x) \cos m \psi}{\partial x} \right) \right\} x \sin \beta_x \ dx \ d\psi.
$$

(25)

Recall that $U_{m,\psi}(x)$, $U_{m,\psi}(x)$, and $U_{m,\psi}(x)$ are defined as $(x/x_2)^p$. Choosing the modal function as $(x/x_2)^p$ with $p = 1$ for the first-mode group $(1,m)$, substituting it into Eq. (25), and taking derivatives with respect to $x$, one can derive the modal sensing signal $(\phi^s)_{m,\psi}$ for the first mode group of linear conical shells,

$$
\phi^s = (\phi^s)_{m,\psi} = \left(\frac{h^r}{S^r}\right) \int_S \int_{\phi} \left\{ h_{31} \left[ \frac{\partial U_{m,\psi}(x) \cos m \psi}{\partial x} + r_x \left( -\frac{\partial^2 U_{m,\psi}(x) \cos m \psi}{\partial x^2} \right) \right] \\
+ h_{32} \left[ \frac{m U_{m,\psi}(x) \cos m \psi}{x \sin \beta_x} + \frac{U_{m,\psi}(x) \cos m \psi}{x} - \frac{U_{m,\psi}(x) \cos m \psi}{x \tan \beta_x} \right] \\
+ r_x \left( \frac{m^2 U_{m,\psi}(x) \cos m \psi}{x^2 \sin^2 \beta_x} - \frac{1}{x} \frac{\partial U_{m,\psi}(x) \cos m \psi}{\partial x} \right) \right\} x \sin \beta_x \ dx \ d\psi.
$$

(26)
Again, note that the above $(1,m)$th modal signal equations of the first mode group, respectively, defined for the linear truncated conical shells were derived when $p = 1$ in the displacement function $(x/x_2)^p$. When evaluating the $(2,m)$th modal signals (i.e., the second mode group) of the linear truncated conical shells, one needs to follow the same procedures using the displacement function $(x/x_2)^p$ with $p = 2$ in the derivations, and so for the higher mode groups of linear conical shells.

$$
\phi^i = (\phi^i)_m = \left(\frac{h'}{S'} \right) \int_0^\pi \int_0^{2\pi} \left\{ h_{31} \left[ \frac{\cos m\phi}{x_2} + \frac{2x \cos m\phi}{x_2^3} - 2r \cos m\phi \right] \right\} + h_{32} \left[ \frac{\cos m\phi}{x_2} + \frac{x \cos m\phi}{x_2^3} - \frac{2x \cos m\phi}{x_2^3} \right] \cot \beta^r + \frac{m \cos m\phi}{x_2 \sin \beta^r} + \frac{x m \cos m\phi}{x_2^3 \sin \beta^r} + \frac{r_\phi}{x_2 \sin^2 \beta} \left( \frac{m^2 \cos m\phi}{x_2^3 \sin^2 \beta} + \frac{m^2 \cos m\phi}{x_2^3 \sin^2 \beta} \right) \right\} x \sin \beta^r \, d\phi.
$$

Furthermore, note that the above signal equations represent the overall modal signal generation of the distributed sensor and then “averaged” over the effective sensor area $S'$. Local microscopic signal magnitudes can be inferred only when the sensor area becomes infinitesimally small and the global average effect is neglected. Local micro-signal generations $(\phi^i)_m$ of the first two mode

![Fig. 6. Signal components and modal voltage of (1,4) mode. Model 1. (a) $s^m_{\phi}$: the longitudinal membrane signal; (b) $s^m_{\phi c}$: the circumferential membrane signal; (c) $s^m_{\phi c}$: the circumferential bending signal; and (d) $[1,4]$: the (1,4)th modal voltage.](image-url)
groups of conical shells are, respectively, represented as

\[
\phi' = (\phi')^n_m = h \left\{ h_1 \left( \cos \frac{m \psi}{x_2} \right) + h_2 \left[ \frac{m \cos m \psi}{x_2 \sin \beta'} \frac{1}{x_2} - \frac{m \cos m \psi}{x_2 \tan \beta'} + r^2 \left( \frac{m^2 \cos m \psi}{x_2 \sin^2 \beta'} + \frac{1}{x_2} \right) \right] \right\},
\]

(28)

\[
\phi' = (\phi')^n_m = h \left\{ h_1 \left( \cos \frac{m \psi}{x_2} + 2 \frac{x \cos m \psi}{x_2^2} - 2r^2 \left( \frac{\cos m \psi}{x_2^2} \right) \right) + h_2 \left[ \cos \frac{m \psi}{x_2} \frac{1}{x_2} + \frac{x \cos m \psi}{x_2^2} \left( \frac{\cos m \psi}{x_2} + \frac{x \cos m \psi}{x_2^2} \right) \right] + m \cos m \psi \frac{1}{x_2 \sin \beta'} + \frac{x m \cos m \psi}{x_2 \sin \beta'} + r^2 \left( \frac{m^2 \cos m \psi}{x_2 \sin \beta'} + \frac{x^2 m \cos m \psi}{x_2^3 \sin \beta'} \right) \right\}.
\]

(29)

Accordingly, detailed spatial distribution of local micro-signals (i.e., the distributed modal voltages) can be established and spatially distributed modal sensing characteristics can be studied.

Fig. 7. Signal components and modal voltage of \((1,5)\) mode, Model 1. (a) \(\psi'\): the longitudinal membrane signal; (b) \(\kappa_{\psi}':\) the circumferential membrane signal; (c) \(k_{\psi'}:\) the circumferential bending signal; and (d) \([1.5]:\) the \((1.5)th\) modal voltage.
5. Evaluation of modal voltages and signal components

Distributed sensing signals and modal voltages of the conical shells of revolution were defined above. Modal signals and micro-signal components of two models of truncated conical shell section are studied. Fig. 3. Both models have the same thickness, however, the apex angle and length of the second model are larger than the first model, i.e., 30.24° versus 14.24° and 7.65 in versus 3.2 in. Accordingly, natural frequencies of the second model are lower than those of the first model [3]. This frequency variation would also influence the signal generation of various modal voltages. Dimensions and geometrical parameters of

![Diagram]

Fig. 8. Signal components and modal voltage of (2,2) mode. Model 1. (a) $v_{xx}$: the longitudinal membrane signal; (b) $v_{yy}$: the circumferential membrane signal; (c) $k_{xx}$: the longitudinal bending signal; $k_{yy}$: the circumferential bending signal; and (d) $[2,2]$: the (2,2)th modal voltage.
the two conical shells are summarized in Table 1. Four modal voltage distributions and micro-signal generations of two mode groups (i.e., the first and the second groups with \(m = 2, 3, 4, 5\)) of two conical shells are presented first, followed by observations and discussions in this section.

Recall that the in-plane displacements \(u_e\) and \(u_\phi\) are neglected in the bending strains but not in the membrane strains. Based on the Donnel–Mushtari Vlasov theory, so the mode shape functions were defined based on the theory. Detailed micro-signal contributions from the membrane and bending strain components are evaluated, so the significant signal component(s) can be identified and appropriate design guidelines can be inferred. Also, note that the \(m - 1\) mode of conical shell with free boundary conditions is the rigid body motion. The shell rigid body

![Graphs of modal voltage distributions for different modes.](image)

Fig. 9. Signal components and modal voltage of \((2,3)\) mode, Model 1. (a) \(u_m\): the longitudinal membrane signal; (b) \(u_\phi\): the circumferential membrane signal; (c) \(k_m\): the longitudinal bending signal; (d) \(k_\phi\): the circumferential bending signal; and (e) \([2,3]\): the \((2,3)\)th modal voltage.
mode \((m = 1)\) contributes no signal generation. Thus, micro-signals and modal voltages of natural modes with \(m \geq 2\) are investigated in case studies.

### 5.1. Model 1. The first mode group \((1, m = 2\text{--}5)\)

Distributed modal voltages and signal components of the first mode group \((1, m = 2\text{--}5)\) of Model-1 are presented in Figs. 4-7. The top-left signal distribution denotes the signal component resulting from the longitudinal membrane strain, the top-right signal denotes the signal component resulting from the circumferential membrane strain, the bottom-left signal denotes the signal component resulting from the circumferential bending strain, and the bottom-right denotes the overall signal distribution - the \((k,m)\)th modal voltage, including all contributing

---

Fig. 10. Signal components and modal voltage of \((2,4)\) mode, Model 1. (a) \(\tau_{l}^m\): the longitudinal membrane signal; (b) \(\tau_{c}^m\): the circumferential membrane signal; (c) \(k_{l}\): the longitudinal bending signal; (d) \(k_{c}\): the circumferential bending signal; and (e) \([2,4]\): the \((2,4)\)th modal voltage.
micro-signal components. Note that the longitudinal bending strain signal vanishes due to the selected displacement function with \( p = 1 \).

5.2. Model 1, the second mode group \((2, m = 2-5)\)

Distributed modal voltages and micro-signal components of the second mode group \((2, m = 2-5)\) of Model 1 are presented in Figs. 8-11. The top-left signal distribution denotes the signal component resulting from the longitudinal membrane strain. The top-right signal denotes the signal component resulting from the circumferential membrane strain. The middle-left signal

![Diagrams](image-url)

Fig. 11: Signal components and modal voltage of (2,5) mode. Model 1. (a) \( \varepsilon_{\text{ln}}^{[2,5]} \): the longitudinal membrane signal; (b) \( \varepsilon_{\text{cm}}^{[2,5]} \): the circumferential membrane signal; (c) \( \varepsilon_{\text{lb}}^{[2,5]} \): the longitudinal bending signal; (d) \( \varepsilon_{\text{cb}}^{[2,5]} \): the circumferential bending signal; and (e) [2,5]: the (2,5)th modal voltage.
denotes the signal component resulting from the longitudinal bending strain, the middle-right signal denotes the signal component resulting from the circumferential bending strain, and the bottom-left denotes the overall signal distribution—the \((k,m)\)th modal voltage, including all contributing signal components. Note that the longitudinal bending strain exists in this case, with the displacement function \(p = 2\).

Fig. 12. Signal components and modal voltage of (1,2) mode, Model 2. (a) \(s_{m}^{1,2}\), the longitudinal membrane signal; (b) \(s_{cm}^{1,2}\), the circumferential membrane signal; (c) \(k_{cm}\), the circumferential bending signal; and (d) \([1,2]\), the \((1,2)\)th modal voltage.

Fig. 13. Signal components and modal voltage of (1,3) mode, Model 2. (a) \(s_{m}^{1,3}\), the longitudinal membrane signal; (b) \(s_{cm}^{1,3}\), the circumferential membrane signal; (c) \(k_{cm}\), the circumferential bending signal; and (d) \([1,3]\), the \((1,3)\)th modal voltage.
5.3. Model 2, the first mode group \((1, m = 2 - 5)\)

Distributed modal voltages and micro-signal components of the first mode group \((1, m = 2 - 5)\) of Model 2 are presented in Figs. 12-15. Arrangements of the signal components are the same as those of the first mode group of Model 1. The final signal distribution—the \((k,m)th\)
Fig. 16. Signal components and modal voltage of (2,2) mode, Model 2. (a) $s_{m}[2,2]$: the longitudinal membrane signal; (b) $s_{c}[2,2]$: the circumferential membrane signal; (c) $k_{m}[2,2]$: the longitudinal bending signal; (d) $k_{c}[2,2]$: the circumferential bending signal; and (e) $[2,2]$: the (2,2)th modal voltage.

modal voltage, including all contributing signal components, is the bottom-right plot. Again, the longitudinal bending strain vanishes due to the selected displacement function with $p = 1$.

5.4. Model 2, the second mode group ($2, m = 2 – 5$)

Distributed modal voltages and micro-signal components of the second mode group ($2, m = 2 – 5$) of Model 2 are presented in Figs. 16–19. Arrangements of component plots are similar to the second mode group of Model 1. The bottom-left signal distribution denotes the $i[k,m]th$ modal voltage, including all contributing signal components. Note that the longitudinal bending strain exists due to the selected displacement function with $p = 2$.

Observing these modal voltages and comparing their micro-signal components of two conical shell models suggests that the dominating signal component among the four signal components (i.e., the longitudinal membrane component, the circumferential membrane component, the longitudinal bending component, and the circumferential bending component) is the circumferential membrane component. This circumferential component dominates the signal generation for lower shell modes and/or deep shells (i.e., Model 2). Usually, high strain regions result in high signal magnitudes. Accordingly, the spatially distributed signal patterns—the modal
Fig. 17. Signal components and modal voltage of (2,3) mode. Model 2. (a) \( s_\mu \): the longitudinal membrane signal; (b) \( s_\theta \): the circumferential membrane signal; (c) \( s_\kappa \): the longitudinal bending signal; (d) \( k_{ax} \): the circumferential bending signal; and (e) \( [2,3]\): the \([2,3]\)th modal voltage.

voltagest clearly reveal the distinct modal dynamic and micro-strain characteristics of conical shells.

6. Conclusions

Conical shell structures and components are often used as nozzles, injectors, blades, rocket fairings, etc., in turbomachinery, aerospace structures, micro-electromechanical systems, etc. This study is to investigate the dynamic sensing characteristics, micro-signal generations, and distributed modal voltages of truncated conical shell sections.

Spatially distributed sensing signals of a distributed piezoelectric sensor layer laminated on a generic double-curvature elastic shell were discussed first. The generic sensing signal equation was derived based on the direct piezoelectric effect, the Gauss theory, the open-circuit assumption, the Maxwell equation, and also the generic double-curvature thin shell theory. Microscopic signal components contributed from various meridional and circumferential membrane/bending strain components were evaluated and the final signal displacement equation was defined and applied to conical shells using two Lamé parameters and two radii of curvature defined for the conical shell geometry. With the Donnel-Mushtari-Vlasov theory, the final closed-form sensing signal expression was defined based on given boundary conditions and mode
shape functions. The assumed mode shape functions have a polynomial expression \((x^2 - x)^n\) for the longitudinal waves and trigonometric (sine or cosine) expression for the circumferential waves.

Distributed signal components and modal voltages of two truncated conical shells with the same thickness and different shell apex angles and sizes were evaluated. Two mode groups and four modal signals of the two conical shell models were calculated and plotted. Distributed modal voltages and their various signal components of the two conical shell models reveal that the dominating signal component among the four contributing micro-signal components (i.e., the longitudinal membrane component, the circumferential membrane component, the longitudinal bending component, and the circumferential bending component) is the circumferential membrane component. This circumferential component is even more dominating for lower shell modes and or deep shells. In general, high strain regions result in high signal magnitudes. Accordingly, the spatially distributed signal patterns— the modal voltages—  clearly represent the modal dynamic and strain characteristics of conical shells. Spatially distributed micro-signals also reveal critical regions showing significant or minimal signal magnitudes. Appropriate selection of regional signal components can further enhance the distributed control effectiveness of conical shells.
Fig. 19. Signal components and modal voltage of (2,5) mode. Model 2. (a) \( s_{\text{xx}} \): the longitudinal membrane signal; (b) \( s_{\text{yy}} \): the circumferential membrane signal; (c) \( k_{\text{xx}} \): the longitudinal bending signal; (d) \( k_{\text{yy}} \): the circumferential bending signal; and (e) \([2,5]\): the (2,5)th modal voltage.

Acknowledgements

This research is supported, in part, by a grant (F49620–98–1-0467) from the Air Force Office of Scientific Research (Project Manager: Brian Sanders). This support is gratefully acknowledged.

References