Buckling Analysis of Piezothermoelastic Composite Plates

Balasubramanian Datchanamourtya and George E. Blandforda1

aPh.D. Graduate and Professor
Department of Civil Engineering, University of Kentucky, Lexington, KY 40506, USA

Abstract

A geometric nonlinear finite element formulation for deformable piezothermoelastic composite laminates using first-order shear deformation theory is presented to solve mechanically and self-strained (thermal and electric field) loaded smart composite plate buckling problems. Green-Lagrange strain-displacement equations in the von Karman sense represent geometric nonlinearity. Mixed finite elements using hierarchic Lagrangian interpolation functions are used for the membrane/bending displacements and electric potential variations, whereas transverse shear stress resultants at the Gauss quadrature points use standard Lagrangian shape functions. Geometrically nonlinear and eigenvalue (bifurcation) analyses are used to determine the critical buckling load magnitudes and corresponding mode shapes. The investigation on the buckling behavior of smart composite plates includes the direct piezoelectric effect on the buckling load magnitudes.

KEYWORDS: buckling, direct piezoelectric effect, geometric nonlinearity, and smart composite

1 Corresponding author: Telephone number – (859) 257-1855; Fax number – (859) 257-4404; and e-mail – gebland@engr.uky.edu
1. Background

Piezoelectric materials exhibit the property of generating an electric potential when subjected to mechanical deformations and this phenomenon is the direct piezoelectric effect. The converse piezoelectric effect by which the material changes shape when an electric voltage is applied is widely used in the actuation and control of vibration in mechanical devices. Piezoelectric materials, also known as smart materials, find their application in aerospace structures, piezoelectric motors, ultrasonic transducers, microphones, etc. Configuring smart composite structures involves bonding piezoelectric layers to the top and bottom of a multilayered composite elastic laminate. The piezoelectric layers act as distributed sensor and actuator to monitor and control the static and dynamic response of the structure.

Extensive studies on plate buckling under mechanical loads are available in the literature starting from the late 50’s, e.g., Timoshenko and Gere (1961). Thermal buckling of composite laminates gained importance only within the last two decades and a very limited number of reports are available in the area of piezothermoelastic bucking. The effect of coupled piezoelectricity on the critical buckling load of laminated plates due to mechanical and thermal loads is a topic of recent research.

Gossard et al. (1952) are one of the earliest to investigate buckling problems under thermal loading. They predicted the buckling response of isotropic plates utilizing the Rayleigh-Ritz method. Tauchert (1987) analyzed the buckling behavior of moderately thick simply supported anti-symmetric angle-ply laminates subjected to a uniform temperature rise. He employed the thermoelastic version of Reissner-Mindlin plate theory to represent the transverse shear deformation. Tauchert and Huang (1987) and Huang and Tauchert
(1992) studied the buckling of symmetric angle-ply laminated plates using classical plate theory and first-order shear deformation theory, respectively. Chen and Chen (1989) employed a finite element approach to study the thermal buckling behavior of laminated plates subjected to a nonuniform temperature distribution. They used products of one-dimensional, cubic Hermitian polynomials to approximate the displacement variables at the midsurface of the plate. Noor and Peters (1992) investigated the thermomechanical buckling behavior of composite plates under the action of combined thermal and axial loads based on the first-order shear deformation theory. They employed a mixed finite element formulation with the generalized displacements and plate stress resultants as unknown variables. Other investigators who studied thermal buckling of composite laminates include Prabhu and Dhanaraj (1994), Chandrashekhara (1990), Thangaratnam and Ramachandran (1989), and Chen et al. (1991).

Jonnalagadda (1993) reported a third-order displacement theory to analyze bending and buckling of piezothermoelastic composite plates. He considered only the converse piezoelectric effect and does not include piezoelectric coupling. He investigated bending and buckling of composite laminates under thermal and electric loading and compared the results of various higher order theories. Dawe and Ge (2000) developed a spline finite strip method for predicting the critical buckling temperatures of rectangular composite laminated plates with various boundary conditions. They used FSDT and assumed a nonuniform temperature distribution in the plane of the plate. Shukla and Nath (2002) developed an analytical formulation to study the postbuckling response of moderately thick composite laminates under the action of inplane mechanical and thermal loadings using a Chebyshev series method.
Varelis and Saravanos (2002) formulated a geometric nonlinear, coupled formulation for composite piezoelectric plate structures using eight node two-dimensional finite elements. They predicted buckling of multilayered beams and plates and studied the effects of electromechanical coupling on the buckling load. In a later paper, Varelis and Saravanos (2004) presented a coupled mixed-field laminate theory to predict the pre and postbuckling response of composite laminates with piezoelectric actuators and sensors. They also analyzed piezoelectric buckling and postbuckling induced by actuators. Tzou and Zhou (1997) developed a theoretical formulation to investigate the dynamics, electromechanical coupling effects, and control of thermal buckling of piezoelectric laminated circular plates with an initial large deformation. They also studied the active control of nonlinear deflections, thermal buckling, and natural frequencies of the plate using high control voltages. Kabir et al. (2007) presented an analytical approach for the thermal buckling response of moderately thick symmetric angle-ply laminates with clamped boundary conditions based on first-order shear deformation theory.

In this paper, a mixed finite element formulation for piezothermoelastic composite laminates based on Reissner-Mindlin plate theory is used. Geometric nonlinearity in the von Karman sense is considered. Displacement and electric potential degrees of freedom are discretized using hierarchic quadratic, cubic, and quartic Lagrangian finite elements (e.g., Zienkiewicz and Taylor 2000). Element level transverse shear stress resultants, interpolated at the Gauss quadrature points using standard Lagrangian shape functions, are condensed. Nodal temperatures vary linearly through the entire depth of the plate while electric potentials change piecewise linearly through the laminate thickness. Eigenvalue and
geometrically nonlinear analysis results for both mechanical and self-strained loadings are investigated. These results demonstrate the piezoelectric coupling effect on the critical loads.

2. Governing Equations

Constitutive equations for a typical layer k of a multilayered piezothermoelastic composite laminate in the Reissner-Mindlin sense relative to the plate geometric coordinate axes x, y and z are (see Figure 1 and Appendix A of Jonnalagadda et al. 1994))

\[\{\sigma\}_{k} = [\bar{Q}]_{k} \{\varepsilon\}_{k} - [\bar{v}]_{k}^T \{E\}_{k} - \{\bar{\lambda}\}_{k} \bar{\theta} \]

(1a)

\[
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\tau_{xy} \\
\tau_{yz} \\
\tau_{xz}
\end{bmatrix}
= \begin{bmatrix}
\bar{Q}_{11} & \bar{Q}_{12} & \bar{Q}_{16} & 0 & 0 \\
\bar{Q}_{12} & \bar{Q}_{22} & \bar{Q}_{26} & 0 & 0 \\
\bar{Q}_{16} & \bar{Q}_{26} & \bar{Q}_{66} & 0 & 0 \\
0 & 0 & 0 & \bar{Q}_{44} & \bar{Q}_{45} \\
0 & 0 & 0 & \bar{Q}_{45} & \bar{Q}_{55}
\end{bmatrix}_{k}
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{xy} \\
\gamma_{yz} \\
\gamma_{xz}
\end{bmatrix}
- \begin{bmatrix}
\bar{\lambda}_x \\
\bar{\lambda}_y \\
\bar{\lambda}_{xy} \\
0 \\
0
\end{bmatrix}
\bar{\theta}
\]

(1b)

\[\{D\}_{k} = [\bar{v}]_{k} \{\varepsilon\}_{k} + [\bar{n}]_{k} \{E\}_{k} + \{\bar{P}_{\theta}\}_{k} \bar{\theta} \]

(2a)

\[
\begin{bmatrix}
D_x \\
D_y \\
D_z
\end{bmatrix}
_k = \begin{bmatrix}
0 & 0 & 0 & \bar{v}_{14} & \bar{v}_{15}
0 & 0 & 0 & \bar{v}_{24} & \bar{v}_{25}
\bar{e}_{31} & \bar{e}_{32} & \bar{e}_{36} & 0 & 0
\end{bmatrix}_k
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{xy} \\
\gamma_{yz} \\
\gamma_{xz}
\end{bmatrix}
+ \begin{bmatrix}
\bar{\eta}_{11} \\
\bar{\eta}_{12} \\
0 \\
0 \\
\bar{\eta}_{33}
\end{bmatrix}_k
\begin{bmatrix}
E_x \\
E_y \\
E_z
\end{bmatrix}_k
+ \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}_k \bar{\theta}
\]

(2b)
where \(\{\sigma\} \) = second Piola-Kirchhoff stress vector which is the work conjugate of Green-Lagrange strain vector \(\{\epsilon\} \); \(\{E\} \) = electric field vector; \(\{\lambda\} \) = temperature-stress vector;
\[\tilde{\theta} = \theta - \theta_R; \theta = \text{temperature}; \theta_R = \text{reference temperature}; \{D\} = \text{electric displacement vector}; \]
\(\{P_\theta\} \) = pyroelectric vector; \([Q] \) = material stiffness matrix; \([\varepsilon] \) = piezoelectric material matrix; and \([\eta] \) = electric permittivity matrix. The over bar on the material coefficient matrices and vectors denote transformation from the principal material axes to the laminate Cartesian coordinate system. For non-piezoelectric lamina, the piezoelectric terms are zero.

The plate displacements are

\[
\begin{align*}
 u(x, y, z) &= u^o(x, y) - z\phi_x(x, y) \\
 v(x, y, z) &= v^o(x, y) - z\phi_y(x, y) \\
 w(x, y, z) &= w^o(x, y)
\end{align*}
\]

where \(u, v, \) and \(w \) are the inplane displacements along the \(x, y \) and \(z \) axes, respectively; superscript \(^o \) denotes midplane displacement; and \(\phi_x \) and \(\phi_y \) are rotations about the negative \(y \)-axis and positive \(x \)-axis, respectively.

The Green-Lagrange strain vector components in terms of the displacements with the nonlinear strains included in the von Karman sense (e.g., Reddy 2004) are

\[
\begin{pmatrix}
 \varepsilon_x \\
 \varepsilon_y \\
 \gamma_{xy}
\end{pmatrix} = \begin{pmatrix}
 \varepsilon_x^o \\
 \varepsilon_y^o \\
 \gamma_{xy}^o
\end{pmatrix} + z \begin{pmatrix}
 \kappa_x \\
 \kappa_y \\
 \kappa_{xy}
\end{pmatrix} + \begin{pmatrix}
 \varepsilon_x^N \\
 \varepsilon_y^N \\
 \gamma_{xy}^N
\end{pmatrix}
\]
\[
\begin{bmatrix}
\frac{\partial}{\partial x} & 0 \\
0 & \frac{\partial}{\partial y} \\
\frac{\partial}{\partial y} & \frac{\partial}{\partial x}
\end{bmatrix}
\begin{bmatrix}
u^o \\
v^o \\
0
\end{bmatrix} + \begin{bmatrix}
\frac{\partial}{\partial x} & 0 \\
0 & \frac{\partial}{\partial y} \\
\frac{\partial}{\partial y} & \frac{\partial}{\partial x}
\end{bmatrix}
\begin{bmatrix}
\phi_x \\
\phi_y \\
0
\end{bmatrix} + \frac{1}{2}
\begin{bmatrix}
\frac{\partial w^o}{\partial x} & 0 \\
0 & \frac{\partial w^o}{\partial y} \\
\frac{\partial w^o}{\partial y} & \frac{\partial w^o}{\partial x}
\end{bmatrix}
\begin{bmatrix}
w^o \\
w^o \\
w^o
\end{bmatrix}
\]

\[= [D_e] \begin{bmatrix}
u^o \\
v^o
\end{bmatrix} + [D_k] \begin{bmatrix}
\phi_x \\
\phi_y
\end{bmatrix} + \frac{1}{2}[A_\phi(w)] [D_N] w^o = \{\v^o\} + z\{\kappa\} + \{\v_N\} \tag{4a}\]

\[
\begin{bmatrix}
\gamma_{yz} \\
\gamma_{xz}
\end{bmatrix} = \begin{bmatrix}
\frac{\partial}{\partial y} & 0 \\
\frac{\partial}{\partial x} & -1
\end{bmatrix}
\begin{bmatrix}
w^o \\
\phi_x \\
\phi_y
\end{bmatrix} = \begin{bmatrix}
\{w D\} \\
-I_s
\end{bmatrix}
\begin{bmatrix}
\phi_x \\
\phi_y
\end{bmatrix} = \{\v_s\} \tag{4b}\]

The strain expressions in equations (4a) – (4b) can be expressed more compactly as

\[
\{\v_b\} = \{\v_b^L\} + \{\v_N\} = \left[[D_b^L] + \frac{1}{2}[D^N(w)]\right]\{\tilde{u}\} \tag{5a}
\]

\[
\{\v_s\} = [D_s] \{\tilde{u}\} \tag{5b}
\]

where \([D_b^L] = \begin{bmatrix}
[D_e] & \{0\}_{3x1} & \{0\}_{3x2} \\
\{0\}_{3x2} & \{0\}_{3x1} & [D_k]
\end{bmatrix}; [D^N(w)] = \begin{bmatrix}
\{0\}_{3x2} & [A_\phi(w)] [D_N] & \{0\}_{3x2} \\
\{0\}_{3x2} & \{0\}_{3x1} & \{0\}_{3x2}
\end{bmatrix};\]

\[
[D_s] = \begin{bmatrix}
\{0\}_{2x2} & \{w D\} \\
\{0\}_{2x2} & -I_s
\end{bmatrix}; \{\v_b^L\} = \langle \v^o, \kappa >^T = \text{linear strain vector};
\]

\[
\{\v_N\} = \langle \v_N, 0 >^T = \text{nonlinear strain vector}; \{\tilde{u}\} = \langle u^o, v^o, w^o, \phi_x, \phi_y >^T;
\]

superscript/subscript L designates linear; and superscript/subscript N designates nonlinear.

The electric field vector, which is the negative of the potential gradient, is

\[
\begin{bmatrix}
E_x \\
E_y \\
E_z
\end{bmatrix}^T = -\begin{bmatrix}
\frac{\partial \psi}{\partial x} \\
\frac{\partial \psi}{\partial y} \\
\frac{\partial \psi}{\partial z}
\end{bmatrix}^T = -\{\nabla\} \psi(x, y, z) \tag{6}\]

where \{\nabla\} = \langle \partial / \partial x, \partial / \partial y, \partial / \partial z >^T = \text{gradient vector}. Electric potential \psi is assumed to vary piecewise linearly through the thickness of a piezoelectric layer \(\rho\)
\[
\psi^p(x, y, z) = \left(\frac{z_{p+1} - z}{t_p} \right) \psi^p_b(x, y) + \left(\frac{z - z_{p-1}}{t_p} \right) \psi^p_t(x, y)
\]

\[
= \begin{pmatrix} \psi^p_b(x, y) \\ \psi^p_t(x, y) \end{pmatrix} = \begin{pmatrix} M^p_{\psi 1}(z) & M^p_{\psi 2}(z) \end{pmatrix} \begin{pmatrix} \psi^p_b(x, y) \\ \psi^p_t(x, y) \end{pmatrix}
\]

where subscripts b, t = bottom, top of the piezoelectric layer; \(\psi^p_b \), \(\psi^p_t \) = electric potential at the bottom and top of the piezoelectric layer \(\rho \); and \(t_\rho \) = thickness of piezoelectric layer \(\rho \).

Substituting equation (7) into equation (6) gives

\[
\{E\}_{\rho} = -\{V\} \begin{pmatrix} M^p_{\psi 1}(z) \\ M^p_{\psi 2}(z) \end{pmatrix} \begin{pmatrix} \psi^p_b(x, y) \\ \psi^p_t(x, y) \end{pmatrix} = -[Z^p_{\psi}] [D^p_{\psi}] \{\psi^p(x, y)\}
\]

where

\[
[Z^p_{\psi}] = \begin{bmatrix} M_{\psi 1} & M_{\psi 2} & 0 & 0 & 0 & 0 \\ 0 & 0 & M_{\psi 1} & M_{\psi 2} & 0 & 0 \\ 0 & 0 & 0 & 0 & -1/t_\rho & 1/t_\rho \end{bmatrix} = \text{depth interpolation matrix; and}
\]

\[
[D^p_{\psi}] = \begin{bmatrix} \frac{\partial}{\partial x} & 0 & \frac{\partial}{\partial y} & 0 & 1 & 0 \\ 0 & \frac{\partial}{\partial x} & 0 & \frac{\partial}{\partial y} & 0 & 1 \end{bmatrix}^T = \begin{bmatrix} \psi^p_b(x, y) \\ \psi^p_t(x, y) \end{bmatrix} = \begin{pmatrix} \theta_b(x, y) \\ \theta_t(x, y) \end{pmatrix}
\]

Applying thermal loading by specifying the temperature on the top and bottom surfaces of the laminate induces thermoelastic and pyroelectric effects. Assuming \(\tilde{\theta} \) varies linearly through the entire depth of the plate

\[
\tilde{\theta}(x, y, z) = \left(\frac{1}{2} - \frac{z}{h} \right) \tilde{\theta}_b(x, y) + \left(\frac{1}{2} + \frac{z}{h} \right) \tilde{\theta}_t(x, y)
\]

\[
= \begin{pmatrix} M_{\theta 1}(z) & M_{\theta 2}(z) \end{pmatrix} \begin{pmatrix} \tilde{\theta}_b(x, y) \\ \tilde{\theta}_t(x, y) \end{pmatrix} = \begin{pmatrix} M_{\theta}(z) \end{pmatrix} \{\tilde{\theta}(x, y)\}
\]
where \(\tilde{\theta}_b, \tilde{\theta}_t \) = bottom and top surface temperatures of the plate at \(z = -h/2 \) and \(z = h/2 \), respectively. Using equations (7) and (10), the stress and electric displacement equations in terms of inplane and transverse components are

\[
\left\{ \left\{ \sigma_p \right\}_{k} \right\} = \left[\left[\tilde{\sigma}_p \right] \left[0 \right] \right]_{K} \left\{ \left\{ \varepsilon_p \right\}_{k} \right\} + \left[\left[0 \right] \left[\tilde{\varepsilon}_p \right] \right]_{K}^{T} \left[Z_{\psi}^{p} \right]\left\{ \psi^{p}(x, y) \right\} + \left\{ \left\{ \tilde{\lambda}_p \right\}_{k} \right\}
\]

\[
\left\{ \left\{ D_s \right\}_{\rho} \right\} = \left[\left[0 \right] \left[\tilde{\varepsilon}_p \right] \right]_{\rho} \left\{ \left\{ \varepsilon_s \right\}_{\rho} \right\} - \left[\frac{-N_{x}}{<0>} \right] \left[\tilde{\eta}_s \right]_{\rho} \left[Z_{\psi}^{\rho} \right]\left\{ \psi^{\rho}(x, y) \right\} + \left\{ \left\{ 0 \right\}_{\rho} \right\}
\]

where \(p, s = \) inplane, transverse shear components; and \(\overline{P}_{p0} = \overline{P}_{z} \).

The stress resultants per unit width of the plate are

\[
\left\{ \left\{ N \right\}, \left\{ M \right\}, \left\{ Q \right\} \right\} = \int_{-h/2}^{h/2} \left\{ \left\{ \sigma_p \right\}, z\left\{ \sigma_p \right\}, \left\{ \sigma_s \right\} \right\} dz
\]

where \(h = \) plate thickness; \(\left\{ N \right\} = < \sigma_{x} \quad \sigma_{y} \quad \sigma_{xy}>^{T} = \) inplane stress resultant vector; \(\left\{ M \right\} = < \sigma_{x} \quad \sigma_{y} \quad \sigma_{xy}>^{T} = \) moment resultant vector; and \(\left\{ Q \right\} = < \sigma_{y} \quad \sigma_{x} >^{T} = \) transverse shear stress resultant vector. The resulting constitutive equations are

\[
\left\{ \left\{ N \right\} \right\} = \left[\left[A \right] \left[B \right] \right] \left\{ \left\{ \varepsilon_{s} \right\} \right\} + \left[\left\{ A_{e} \right\}^{T} \right] \left\{ \psi \right\} - \left[\left\{ A_{e} \right\} \right] \left\{ \tilde{\psi} \right\} + \left\{ \left\{ \tilde{\lambda} \right\} \right\}
\]

\[
\left\{ Q \right\} = \left[S \right] \left\{ \varepsilon_{s} \right\} + \left[\left[S_{e}^{1} \right]^{T} \right] \frac{\partial}{\partial x} \left\{ \psi \right\} + \left[\left[S_{e}^{2} \right]^{T} \right] \frac{\partial}{\partial y} \left\{ \psi \right\}
\]

Using the strain-displacement equations (4a, b) and (5a, b), the stress resultants are
\[
\{ \tilde{N} \} = [C][D_b^1] + \frac{1}{2}[D^N(w)]\{ \tilde{u} \} + [C_e]^T\{ \tilde{\psi} \} - [A]\{ \tilde{\theta} \}
\]
\[
= << N > < M > >^T \{ \tilde{N}^u \} + \{ \tilde{N}^\psi \} - \{ \tilde{N}^\theta \}
\]
\[
{Q} = [S][D_s]\{ \tilde{u} \} + [S_e]^T[D_{\psi}]{\tilde{\psi}} = \{ Q^u \} + \{ Q^\psi \}
\]

where \(\{ N^\alpha \} = << N^\alpha > < M^\alpha > >^T \); \(\{ N^\alpha \} = < N^\alpha_x \ N^\alpha_y \ N^\alpha_{xy} >^T \); \(\{ M^\alpha \} = < M^\alpha_x \ M^\alpha_y \ M^\alpha_{xy} >^T \); \(\{ Q^\alpha \} = < Q^\alpha_x \ Q^\alpha_y >^T \); and \(\alpha = u, \psi \) or \(\theta \). The electric potential inplane gradient matrix and electric potential vector for the laminate are

\[
[D_{\psi}] = \text{diag}[D_{\psi}^1, D_{\psi}^2, \ldots, D_{\psi}^{NP}]
\]

\[
\{ \tilde{\psi} \} = \begin{pmatrix} < \psi_1^1 > < \psi_2^1 > \ldots < \psi^{NP}_1 > \end{pmatrix}^T
\]

Depth integrated material coefficient matrices for the laminate are

\[
[C] = \begin{bmatrix} [A] & [B] \\ [B] & [D] \end{bmatrix}; \quad [C_e]^T = \begin{bmatrix} [A_e]^T \\ [B_e]^T \end{bmatrix}; \quad [A] = [[A_\lambda], [B_\lambda]]^T
\]

\[
([A], [B], [D]) = \sum_{k=1}^{NL} [Q_p]_k \left((z_{k+1} - z_k), \frac{1}{2}(z_{k+1}^2 - z_k^2), \frac{1}{3}(z_{k+1}^3 - z_k^3) \right)
\]

\[
[A_e]^T = \begin{bmatrix} [A_e]^1 & [A_e]^2 \ldots [A_e]^{NP} \end{bmatrix}
\]

\[
[B_e]^T = \begin{bmatrix} [B_e]^1 & [B_e]^2 \ldots [B_e]^{NP} \end{bmatrix}
\]

\[
[A_e]_\rho = \begin{bmatrix} -1 \\ 1 \end{bmatrix} < \bar{\epsilon}_p >_\rho; \quad [B_e]_\rho = \frac{1}{2}(z_{\rho+1} + z_\rho)[A_e]_\rho
\]

\[
[A_\lambda] = \begin{bmatrix} \frac{1}{2}\{ \bar{A}_\lambda \} - \frac{1}{h}\{ \bar{B}_\lambda \} \\ \frac{1}{2}\{ \bar{A}_\lambda \} + \frac{1}{h}\{ \bar{B}_\lambda \} \end{bmatrix}
\]
\[[B_\lambda] = \left[\frac{1}{2} \{B_\lambda\} - \frac{1}{h} \{D_\lambda\} \quad \frac{1}{2} \{B_\lambda\} + \frac{1}{h} \{D_\lambda\} \right] \]

(16j)

\[\left(\{A_\lambda\}, \{B_\lambda\}, \{D_\lambda\} \right) = \sum_{k=1}^{NL} \{\bar{\lambda}_k\}_k \left(z_{k+1} - z_k, \frac{1}{2}(z_{k+1}^2 - z_k^2), \frac{1}{3}(z_{k+1}^3 - z_k^3) \right) \]

(16k)

\[[S] = [K_s] \sum_{k=1}^{NL} \{\bar{Q}_k\}_k (z_{k+1} - z_k) [K_s] \]

(16l)

\[[S_c]^T = \begin{bmatrix} [S_c]^T_1 & [S_c]^T_2 & \cdots & [S_c]^T_{NP} \end{bmatrix}; \quad [S_c]^T_\rho = \begin{bmatrix} [S_c]^T_\rho_1 & [S_c]^T_\rho_2 & [0] \end{bmatrix} \]

(16m, n)

\[[S_c^1]_\rho = \frac{t_p}{2} \begin{bmatrix} \bar{e}_{14} & \bar{e}_{15} \end{bmatrix}; \quad [S_c^2]_\rho = \frac{t_p}{2} \begin{bmatrix} \bar{e}_{24} & \bar{e}_{25} \end{bmatrix} \]

(16o, p)

where \(NP \) = number of piezoelectric layers; and \(NL \) = total number of layers. Since the actual variation of transverse shear stresses in a plate is not constant through the depth, Reissner-Mindlin theory introduces a shear correction matrix \([K_s] = \begin{bmatrix} k_{s2} & 0 \\ 0 & k_{s1} \end{bmatrix}\) in the depth integrated transverse shear coefficient matrix. Coefficients \(k_{s1} \) and \(k_{s2} \) are shear correction factors. Electric potential between adjacent piezoelectric layers is continuous. This paper assumes that a grounded interface exists between a piezoelectric layer and a structural layer, i.e., electric potential is zero.

3. Coupled Mixed Variational Principle

Using the modified Hellinger-Reissner functional facilitates independent interpolation of displacement, electric potential and transverse shear stress resultant variables. The depth integrated mechanical energy functional for a mixed variational formulation is

\[\Pi^M = \frac{1}{2} \int_A \left\{ \left[[D_b]^T \right] + \frac{1}{2} [D^N(w)] \right\} \{\bar{u}\}^T \left[C \right] \{ \left[[D_b]^T \right] + \frac{1}{2} [D^N(w)] \} \{\bar{u}\} \right\} dA \]
where $\Pi^M = \text{modified Hellinger-Reissner functional that represents mechanical (elastic) energy; } \Pi^M_{\text{ext}} = \text{potential energy due to externally applied mechanical loads; } \text{A} = \text{plate area; and the other symbols are as previously defined.}

The depth integrated piezoelectric energy functional is

$$\Pi^P = \frac{1}{2} \int_A \langle \hat{\psi} > [C_e] \{\epsilon_b \} dA + \frac{1}{2} \int_A \{[D_{\psi}] \{\psi \} \}^T [S_e] \{\epsilon_s \} dA$$

$$- \frac{1}{2} \int_A \{[D_{\psi}] \{\psi \} \}^T [C_\eta] [D_{\psi}] \{\psi \} dA + \int_A \{[D_{\psi}] \{\psi \} \}^T [P_0] \{\theta \} dA - \Pi^P_{\text{ext}}$$

(18)

where $\Pi^P = \text{piezoelectric energy functional; } \Pi^P_{\text{ext}} = \text{external work due to applied electric potential; and the depth integrated dielectric and pyroelectric matrices for the laminate are}$

$$[C_\eta] = \text{diag}[[C_\eta]_1 \ [C_\eta]_2 \cdots \ [C_\eta]_{NP}]$$

(19a)

$$[C_\eta]_\rho = \int_{Z^p} [Z^p_{\psi}]^T [\bar{\eta}]_\rho [Z^p_{\psi}] dz = \begin{bmatrix} [\eta_{11}] & [\eta_{12}] & [0] \\ [\eta_{21}] & [\eta_{22}] & [0] \\ [0] & [0] & [\eta_{33}] \end{bmatrix}_\rho$$

(19b)

$$[\eta_{ij}]_\rho = \frac{(\bar{\eta}_{ij})_\rho t_\rho}{6} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \quad (i, j = 1, 2); \quad [\eta_{33}]_\rho = \frac{t_\rho}{t^2} \bar{\eta}_{33} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

(19c, d)

$$[P_\theta] = \text{diag}[[P_\theta]_1 \ [P_\theta]_2 \cdots \ [P_\theta]_{NP}]$$

(19e)
\[
\begin{align*}
\{P\}_\rho &= \int_{Z^p}^{Z^{p+1}} \begin{bmatrix} 0 \\ 0 \\ \overline{P}_z \end{bmatrix}_\rho < M_\rho > \rho \, dz = \begin{bmatrix} [0]_{2x2} \\ [0]_{2x2} \\ [\overline{P}]_\rho \end{bmatrix} \\
\end{align*}
\]

(19f)
\[
\begin{align*}
\begin{bmatrix} 1 - \frac{Z_p + Z_p'}{h} \\ z_p + z_p' \\ 1 + \frac{Z_p + Z_p'}{h} \\ -1 + \frac{Z_p + Z_p'}{h} \end{bmatrix} \\
\end{align*}
\]
\[
\begin{align*}
\begin{bmatrix} 1 - \frac{Z_p + Z_p'}{h} \\ -1 + \frac{Z_p + Z_p'}{h} \end{bmatrix} \\
\end{align*}
\]
\[
\begin{align*}
\begin{bmatrix} 1 + \frac{Z_p + Z_p'}{h} \\ -1 + \frac{Z_p + Z_p'}{h} \end{bmatrix} \\
\end{align*}
\]

(19g)

4. Finite Element Approximation

The displacements, electric potentials, and transverse shear stress resultants in equations (17) and (18) are functions of the inplane plate coordinates. Thus, discretization uses two-dimensional finite elements. Hierarchic Lagrangian shape functions interpolate displacement and electric potential variables from Zienkiewicz and Taylor (2000) are used to discretize the element displacement and electromagnetic potential variables (see Fig. 2). Interpolation of the transverse shear stress resultants \(Q_y \) and \(Q_x \) at the Gauss integration points (see Fig. 3) uses standard Lagrangian shape functions.

Under thermal loading, top and bottom surface temperatures are specified at the corner node points. Thus, temperature interpolation is based on the first four shape functions of Fig. 2(b).

Using the element shape functions, the element strain-displacement and electric displacement-electric potential matrices are

\[
\begin{align*}
[B^L_{b1}] = [D^L_b][N_u] = [[B^L_{b1}]] [B^L_{b1}] \cdots [B^L_{bnen}] \\
[B^L_{bi}] = \begin{bmatrix} [B_{ci}] \\ [0]_{3x1} \end{bmatrix} \begin{bmatrix} [0]_{3x1} \\ [0]_{3x2} \end{bmatrix} \\
\end{align*}
\]

(20a)

(20b)
\[[B_{u}] = [D_e][I_{Ni}]; \quad [B_{ki}] = [D_k][I_{Ni}]; \quad [I_{Ni}] = \begin{bmatrix} N_i & 0 \\ 0 & N_i \end{bmatrix} \] \hspace{1cm} (20c, d, e)

\[[B_s] = [D_s][N_u] = [[B_{s1}] \quad [B_{s2}] \ldots \quad [B_{snen}]] \] \hspace{1cm} (20f)

\[[B_{si}] = \begin{bmatrix} 0 \\ \{w\} \end{bmatrix}_{2x2} \quad \{w\}B_i - N_i[I_s]; \quad \{w\}B_i = \{w\}D[N_i] \] \hspace{1cm} (20g, h)

\[[B^N] = [D^N][N_u] = [[B^N_1] \quad [B^N_2] \ldots \quad [B^N_{nen}]]; \quad [B^N_i(w)] = \begin{bmatrix} A\phi(w) \\ 0 \\ 3x2 \end{bmatrix} \] \hspace{1cm} (20i, j)

\[[A\phi(w)] = \begin{bmatrix} \frac{\partial <N>}{\partial x} \{w\} & 0 \\ 0 & \frac{\partial <N>}{\partial y} \{w\} \end{bmatrix}; \quad [G_i] = \begin{bmatrix} 0 & \frac{\partial N_i}{\partial x} & 0 & 0 \\ 0 & \frac{\partial N_i}{\partial y} & 0 & 0 \end{bmatrix} \] \hspace{1cm} (20k, l)

\[[B_\psi] = [D_\psi][N_\psi] = [[B_\psi_1] \quad [B_\psi_2] \ldots \quad [B_{\psi nen}]]; \quad [B_{\psi i}] = [D_\psi][\hat{N}_{\psi i}] \] \hspace{1cm} (20m, n)

\[[N_\psi] = \begin{bmatrix} \hat{N}_{\psi 1} \quad \hat{N}_{\psi 2} \quad \ldots \quad \hat{N}_{\psi nen} \end{bmatrix}; \quad [\hat{N}_{\psi i}] = \begin{bmatrix} N_i & 0 & \ldots & 0 \\ 0 & N_i & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & N_i \end{bmatrix}_{2NP \times NPS} \] \hspace{1cm} (20o, p)

\(NPS = \) Number of Piezoelectric Surfaces; \(N_i = \) \(i \)th hierarchical shape function (see Fig. 2); and \(nen = \) number of element nodes. Note the shape function below the diagonal in (20p) appears if the piezoelectric lamina is discretized using multiple layers and thus enforces continuity of the electromagnetic potential, otherwise the nodal shape function matrix is diagonal.

Combining the mechanical and piezoelectric energy functionals of equations (17) and (18), using equations (20a) – (20p), the total energy functional is
\[
\Pi^e = \langle \hat{u}^e \rangle > \left[\frac{1}{2} \int_a \{ [B^L_b] + \frac{1}{2}[B^N(w)] \}^T [C] \{ [B^L_b] + \frac{1}{2}[B^N(w)] \} da \right] \{ \hat{u}^e \} \\
+ \langle \hat{u}^e \rangle > \left[\int_a [B_5^T] [N_Q] da \right] \{ \hat{Q} \} - \langle \hat{Q} \rangle > \left[\frac{1}{2} \int_a [N_Q][S]^{-1} [N_Q]^T da \right] \{ \hat{Q}^e \}
\]
\[
- \langle \hat{u}^e \rangle > \left[\int_a \{ [B^L_b] + \frac{1}{2}[B^N(w)] \}^T [A][N_0] da \right] \{ \hat{\theta}^e \}
\]
\[
+ \langle \hat{u}^e \rangle > \left[\int_a \{ [B^L_b] + \frac{1}{2}[B^N(w)] \}^T [C_e]^T [N_\psi] da \right] \{ \hat{\psi}^e \}
\]
\[
+ \langle \hat{Q}^e \rangle > \left[\int_a [N_Q]^T [S]^{-1} [S_e]^T [B_\psi] da \right] \{ \hat{\psi}^e \}
\]
\[
- \langle \hat{\psi}^e \rangle > \left[\frac{1}{2} \int_a \left([B_\psi]^T [S_e][S]^{-1} [S_e]^T [B_\psi] + [B_\psi]^T [C_\eta][B_\psi] \right) da \right] \{ \hat{\psi}^e \}
\]
\[
+ \langle \hat{\psi}^e \rangle > \left[\int_a [B_\psi]^T [P_0][N_0] da \right] \{ \hat{\psi}^e \} - \Pi^e_{\text{ext}}
\]

where \(\Pi^e \) = total energy functional of element \(e \); \(\Pi^e_{\text{ext}} \) = total external work due to mechanical and electrical loading of element \(e \); and \(a \) = area of a typical element.

The structure reaches the state of equilibrium when the energy functional is stationary. Thus solution to the problem can be obtained by seeking a set of values for the degrees of freedom that renders the energy functional a stationary which is attained by taking a variation of the energy functional and equating it to zero. Taking the variation of the energy functional leads to the following matrix equations

\[
\begin{bmatrix}
[K_{uu}] & [K_{u\psi}] & [K_{uQ}] \\
[K_{v\psi}] & [K_{v\psi}] & [K_{vQQ}] \\
[K_{x\psi}] & [K_{x\psi}] & [K_{xQQ}]
\end{bmatrix}^e
\begin{bmatrix}
\{ \hat{u}^e \} \\
\{ \hat{\psi}^e \} \\
\{ \hat{\phi}^e \}
\end{bmatrix}^e
- \begin{bmatrix}
[K_{uu}]^N & [K_{u\psi}]^N & [K_{uQ}]^N & [0] \\
[K_{v\psi}]^N & [K_{v\psi}]^N & [K_{vQQ}]^N & [0] \\
[K_{x\psi}]^N & [K_{x\psi}]^N & [K_{xQQ}]^N & [0]
\end{bmatrix}^e
\begin{bmatrix}
\{ \hat{u}^e \} \\
\{ \hat{\psi}^e \} \\
\{ \hat{\phi}^e \}
\end{bmatrix}^e
- \begin{bmatrix}
\{ \hat{f}_0^e \} \\
\{ \hat{f}_1^e \} \\
\{ \hat{f}_2^e \}
\end{bmatrix}^e
\]

(21)
\[
\{\mathbf{f}^{u}\}_e + \{\mathbf{f}^{v}\}_e = \{\mathbf{f}^{u\theta}\}_e + \{\mathbf{f}^{v\theta}\}_e
\]

(22)

where \(\{\mathbf{u}^e\}_i\) and \(\{\mathbf{v}^e\}_i\) = \(i^{th}\) node displacement and potential vectors of element \(e\); \(\{\mathbf{\hat{Q}}^e\}_i\) = \(i^{th}\) node transverse shear stress resultants vector of element \(e\); \(\{\mathbf{f}^u\}_e\) = mechanical load vector of element \(e\); and \(\{\mathbf{f}^v\}_e\) = electrical load vector of element \(e\). The element coefficient matrices and thermal load vectors are

\[
\begin{align*}
[K_{uu}]_e &= \int_a [B^L_b]^T [C][B^L_b] da \\
[K_{QQ}]_e &= \int_a [B^L_s]^T [S]\{N_Q\} da \\
[K_{Q\psi}]_e &= -\int_a [N_Q][S]^{-1}[N_Q]^T da \\
[K_{\psi\psi}]_e &= \int_a [B^L_b]^T [C_e]^T [N_{\psi}] da \\
[K_{\psi\psi}]_e &= \int_a [B^L_s]^T [S][S]^{-1}[S_e]^T [B_{\psi}] da - \int_a [B_{\psi}]^T [C_{\eta}] [B_{\psi}] da \\
[K_{uu}]_e &= \int_a \left\{[B^L_b][C]\left(\frac{1}{2}[B^N(w)]\right) + [B^N(w)]^T [C][B^L_b]\right\} da \\
[K_{QQ}]_e &= \int_a [B^N(w)]^T [C_e]^T [N_{\psi}] da \\
[K_{\psi\psi}]_e &= \int_a [N_{\psi}]^T [C_e] \left(\frac{1}{2}[B^N(w)]\right) da \\
\end{align*}
\]

(23a) (23b) (23c) (23d) (23e) (23f) (23g) (23h) (23i)
\[\{f_{u\theta}\}_e = \left[\int_a [B_b^L] [\Lambda] [N\theta] \, da \right] \{\hat{\theta}\}_e \]

(23j)

\[\{f_{N\theta}\}_e = \left[\int_a [B^N(w)]^T [\Lambda] [N\theta] \, da \right] \{\hat{\theta}\}_e \]

(23k)

\[\{f_{\psi\theta}\}_e = \left[\int_a [B_\psi]^T [P_\theta] [N\theta] \, da \right] \{\hat{\theta}\}_e \]

(23l)

where \([N_u] = [N_1 [I_5] \ N_2 [I_5] \ \cdots \ N_{nens} [I_5]]; \ [N_\theta] = [N_1 [I_2] \ N_2 [I_2] \ N_3 [I_2] \ N_4 [I_2]]\);
\[\hat{\theta}_j = j^{th} \text{ corner node temperature}; \ [I_k] = k \times k \text{ identity matrix}; \ [N_Q] = \left[\bar{N}_1 [I_2] \ \bar{N}_2 [I_2] \ \cdots \ \bar{N}_{nens} [I_2] \right] \]

\[\bar{N}_i = \text{Lagrangian shape function corresponding to the i}^{th} \text{ transverse shear interpolation point (see Fig. 3)}; \] and \(nens = \text{number of element transverse shear stress resultant interpolation points.}\)

Condensation of the non-continuous element transverse shear stress resultants at the element level simplifies the element matrix equations of (22), which leads to

\[\begin{bmatrix} \bar{K}_{Le} \end{bmatrix} \begin{bmatrix} \{U_e\} \end{bmatrix} + \begin{bmatrix} K_N \end{bmatrix}_e \{f_N\}_e = \begin{bmatrix} f^U \end{bmatrix}_e + \begin{bmatrix} f^\theta \end{bmatrix}_e \]

(24)

where

\[\begin{bmatrix} \bar{K}_{Le} \end{bmatrix} = \begin{bmatrix} K_{UU} \end{bmatrix}_e - \begin{bmatrix} K_{QU} \end{bmatrix}_e^T \begin{bmatrix} K_{QQ} \end{bmatrix}_e^{-1} \begin{bmatrix} K_{QU} \end{bmatrix}_e \]

(25a)

\[\begin{bmatrix} \bar{K}_{Le} \end{bmatrix} = \begin{bmatrix} \bar{K}_{uu} & \bar{K}_{uv} \\ \bar{K}_{uv} & \bar{K}_{vv} \end{bmatrix}_e; \quad \begin{bmatrix} K_N \end{bmatrix}_e = \begin{bmatrix} K_{uuN} & K_{uvN} \\ K_{uvN} & K_{vvN} \end{bmatrix}_e \]

(25b, c)

\[\begin{bmatrix} \{U_e\} \end{bmatrix} = \begin{bmatrix} \{\tilde{u}\}_e \\ \{\tilde{v}\}_e \end{bmatrix}; \quad \begin{bmatrix} \{f_N\}_e \end{bmatrix} = \begin{bmatrix} \{f^U\}_e \\ \{0\} \end{bmatrix} \]

(25d, e)
\(\{f^U\}_e = \begin{cases} \{f^u\}_e \\ \{f^\psi\}_e \end{cases} ; \quad \{f^\theta\}_e = \begin{cases} \{f^{u\theta}\}_e \\ \{f^{\psi\theta}\}_e \end{cases} \) \((25f, g) \)

The over bar denotes condensed matrices.

Assembly of the element equilibrium equations (24) uses the direct stiffness method to obtain the structure equations. Global equilibrium equations are

\[
\begin{bmatrix} [\bar{K}_L] + [K_N] \end{bmatrix} \{U\} - \{F_N\} = \{F\}
\]

(26)

where \([\bar{K}_L] = \sum_e [K_L]_e = \text{structure linear coefficient matrix}\); \([K_N] = \sum_e [K_N]_e = \text{structure nonlinear coefficient matrix}\); \(\{F_N\} = \sum_e \{f_N\}_e = \text{nonlinear component of the thermal load vector}\); \(\{F\} = \{F^U\} + \{F^\theta\}\); \(\{F^U\} = \text{nodal mechanical and electric load vector}\); and \(\{F^\theta\} = \sum_e \{f^\theta\}_e = \text{linear component of thermal and pyroelectric load vector}\).

5. Buckling Analysis

At static equilibrium, i.e., when the internal and external forces are balanced, the system of nonlinear equations becomes

\[
[K_T] \{\Delta U\} = \{0\}
\]

(27)

When the plate is subjected to inplane loads only, i.e., when the transverse displacements are zero, the nonlinear stiffness component in the tangent stiffness matrix does not exist. If the inplane stresses can lead to buckling, then an eigenproblem exists

\[
\begin{bmatrix} [\bar{K}_L] + \lambda [K_\sigma] \end{bmatrix} \{\Delta U\} = \{0\}
\]

(28)

where \(\lambda\) is the inplane stress magnification factor. The objective of the eigenproblem is to calculate values of \(\lambda\) that make the tangent stiffness matrix singular thereby introducing
instability in the plate. Thus, critical buckling loads and associated mode shapes correspond
to the eigenvalues and eigenvectors of (28). Expanding equation (28) gives
\[
\begin{pmatrix}
\begin{bmatrix} [\bar{K}^{uu}] & [\bar{K}^{u\psi}] \\
[\bar{K}^{\psi u}]^T & [\bar{K}^{\psi\psi}]
\end{bmatrix}
\end{bmatrix}
- \lambda
\begin{bmatrix}
[K^\sigma_u] \\
[0] \\
[0] \\
[0] \\
[K^\sigma_\psi]
\end{bmatrix}
\begin{bmatrix}
\{\Delta u\} \\
\{0\} \\
\{\Delta \psi\}
\end{bmatrix}
= \{0\}
\]
(29)

where \([K^\sigma_u]\) is the assembled geometric stiffness matrix associated with the displacement
degrees of freedom, i.e., \([K^\sigma_u]_e = \int_a \begin{bmatrix} [G]^T [\hat{N}] [G] \\
[0] \\
[0] \end{bmatrix} \text{da} = \text{element geometric stiffness matrix; } [G] = [[G_1] [G_2] \cdots [G_{nen}]]; \ [G]_1 = \begin{bmatrix} 0 & 0 & \frac{\partial N_i}{\partial x} & 0 & 0 \\
0 & 0 & \frac{\partial N_i}{\partial y} & 0 & 0 \\
\end{bmatrix}; \text{ and } [\hat{N}] = \\
\begin{pmatrix}
N_x & N_{xy} \\
N_{xy} & N_y
\end{pmatrix}
= \text{inplane stress resultant matrix with } N_{\alpha} = N_{\alpha}^u + N_{\alpha}^\psi - N_{\alpha}^0, \alpha = x, y \text{ or } xy.

Since buckling is an elasticity phenomenon, condensation of the electric potential degrees of freedom does not alter the eigenproblem. Condensation is at the global level. Equation (29) after condensation becomes
\[
\left([\bar{K}^{uu}_L] - \lambda [K^\sigma_u] \right) \{\Delta u\} = \{0\}
\]
(31)

where \([K^{uu}_L] = [\bar{K}^{uu}] - [\bar{K}^{u\psi}]^T [\bar{K}^{\psi\psi}]^{-1} [\bar{K}^{\psi u}]\).

The geometric stiffness matrix is a function of inplane stress resultants. A first step in
the buckling analysis is the linear elastic analysis of the plate under the action of inplane
loads to calculate the inplane stresses and subsequently the geometric stiffness matrix. In the
second step, calculation of the buckling loads and corresponding mode shapes follows from
equation (31).
An alternate method for computing the critical load is nonlinear buckling analysis. This alternate procedure involves subjecting the plate to an inplane load and a small notional transverse load. Then perform an incremental/iterative nonlinear analysis, which is based on the explicit iteration on spheres algorithm of Forde and Stiemer (1987) and is described in detail in Blandford (1996) and Datchanamourty (2008). At the point where the stiffness matrix approaches a singularity, a small perturbation in the transverse load leads to an enormous increase in the transverse displacement. Such a behavior in the load-deflection curve signifies points of instability. The response after oscillating about unstable points slowly stabilizes into an equilibrium path with subsequent load steps and iterations.

6. Numerical Results

The mechanically loaded problem is a simply supported six-layer symmetric composite (PZT5/0/90)s subjected to uniaxial inplane line load (Varelis and Saravanos, 2002). The material properties of the Graphite/Epoxy layer are $E_1 = 132.4$ GPa; $E_2 = 10.8$ GPa; $G_{12} = G_{13} = 5.6$ GPa; $G_{23} = 3.6$ GPa; and $\nu_{12} = 0.24$. Material properties of the piezoelectric layer (PZT5) are $E_1 = 62$ GPa; $E_2 = 62$ GPa; $G_{12} = G_{13} = 23.6$ GPa; $G_{23} = 18$ GPa; $\nu_{12} = 0.31$; $d_{31} = d_{32} = -220 \times 10^{-12}$ m/V; $d_{24} = d_{15} = 670 \times 10^{-12}$ m/V; and $\eta_{11} = \eta_{22} = \eta_{33} = 2598 \eta_0$ where $\eta_0 = 8.85 \times 10^{-12}$ F/m. Dimensions of the plate are $a = b = 0.2$ m and $h = 0.001$ m.

Table 1 shows the critical buckling load multipliers for the first four modes in the x-axis i.e., (1, 1), (2, 1), (3, 1) and (4, 1) based on a uniaxial compressive load of 1 kN/m. Varelis and Saravanos (2002) compared their uncoupled results with analytical elasticity solutions of Whitney (1987). The finite element solutions of Varelis and Saravanos uses an 8 x 8 mesh of eight-node two-dimensional serendipity elements while in the current research
(Mixed Formulation) nine-node Lagrangian hierarchical elements are employed with the same mesh density. The first three buckling modes of the uncoupled analysis predicted by both formulations agree closely, less than one-half percent difference, with the analytical solution. For the fourth mode, the mixed formulation result is slightly more accurate (1.14% difference) than the solution of Varelis and Saravanos (-1.84% difference). The mixed formulation results show good agreement with the coupled solutions of Varelis and Saravanos (2002) as shown by comparing the two “C” columns in Table 1. Slight differences could be due to the slightly more accurate nine-node Lagrangian element versus the eight-node serendipity element used by Varelis and Saravanos. Table 1 also presents the critical buckling loads based on 8 x 8 mesh of cubic and quartic elements. Buckling loads for the first three modes show negligible difference compared to the analytical results. A difference of less than -0.25% is observed for the fourth mode in the case of cubic and quartic hierarchic elements.

An 8 x 8 mesh of nine-node Lagrangian elements is used on the full plate for the nonlinear buckling analysis with coupled and uncoupled effects. As given by the eigenvalue analysis, the nonlinear response predicts the various buckling modes. The effect of piezoelectric coupling as shown in Figure 4 is to increase the buckling load. For the problem under consideration, a change of 35% is observed in the buckling load due to the piezoelectric coupling.

To investigate the piezoelectric coupling effect for self-strain buckling problems (thermal and piezoelectric), an eight-layer symmetric laminate (0/90/0/90)s, with piezoelectric layers at the top and bottom thus making it a ten-layer composite, is considered. Material properties of the lamina are $E_1 = 138$ GPa; $E_2 = 8.28$ GPa; $G_{12} = G_{13} = G_{23} = 6.90$
Piezoelectric material properties for the isotropic PVDF material are $E_1 = E_2 = E_3 = 2 \text{ GPa}; \; \nu_{12} = \nu_{13} = \nu_{23} = 0.333; \; G_{12} = G_{13} = G_{23} = 0.75 \text{ GPa}; \; \alpha_1 = \alpha_2 = \alpha_3 = 1.2 \times 10^{-6} /\degree\text{C}; \; d_{31} = d_{32} = 23 x 10^{-12} \text{ oC/N}; \; d_{24} = d_{15} = -23 x 10^{-12} \text{ oC/N}; \; \eta_{11} = \eta_{22} = \eta_{33} = 1 \times 10^{-10} \text{ F/m}; \; \text{and} \; p_{3} = -2.5 \times 10^{-5} \text{ oC/K/m}^2.

Piezoelectric material properties for the isotropic PZT are $E_1 = E_2 = E_3 = 60 \text{ GPa}; \; \nu_{12} = \nu_{13} = \nu_{23} = 0.333; \; G_{12} = G_{13} = G_{23} = 22.5 \text{ GPa}; \; \alpha_1 = \alpha_2 = \alpha_3 = 1.2 \times 10^{-6} /\degree\text{C}; \; \eta_{11} = \eta_{22} = \eta_{33} = 1.5 \times 10^{-8} \text{ F/m}; \; d_{31} = d_{32} = -1.75 \times 10^{-10} \text{ oC/N}; \; d_{24} = d_{15} = 6.0 \times 10^{-10} \text{ oC/N}, \; \text{and} \; p_{3} = 7.5 \times 10^{-4} \text{ oC/K/m}^2.$

Validation of the uncoupled results uses the analytical results of Jonnalagadda (1993). Additionally, piezoelectric coupling effects are investigated. Table 2 shows the thermal buckling results using a 4 x 4 mesh of quadratic elements for various a/h ratios of the symmetric composite with PVDF layers on top and bottom. Critical thermal buckling loads are nondimensionalized as

$$\bar{T} = \theta \alpha_0 \left(\frac{a}{h} \right)^2$$

where $\alpha_0 = 1.2 \times 10^{-4} /\degree\text{C}$. Table 2 shows excellent agreement (errors $<< 1\%$) between the finite element and first-order shear deformation theory analytical solutions. For the PVDF laminate, the piezoelectric coupling effect increases the buckling load by approximately 3%.

Table 3 shows the thermal buckling load for the same laminate configuration but with PZT layers on top and bottom. It is interesting to note that piezoelectric coupling reverses the inplane stresses induced in the PZT layers, which leads to negative buckling loads for the various a/h ratios. This is due to the pyroelectric coefficient of the PZT material being positive as opposed to negative for PVDF materials. Ignoring the sign change, the coupled
buckling results are 64.6% to 68.9% higher than the corresponding uncoupled buckling loads for $10 \leq a/h \leq 1000$ ((-coupled result – uncoupled result)/uncoupled result).

Nonlinear thermal buckling analysis is performed by applying a uniform temperature on the top and bottom surfaces of piezothermoelastic laminates in addition to a small notional transverse mechanical load. All the critical loads considered for the PVDF laminate matched the buckling results. Figure 5 shows the nonlinear calculated results for a/h ratio of 40. This result, and others not included, show that the nonlinear analysis predicts the same buckling load as does the eigenvalue problem for the thermally loaded PVDF laminated for both uncoupled and coupled analyses.

Table 4 records piezoelectric buckling results for the eight-layer symmetric laminate with PVDF piezoelectric layers at the top and bottom of the laminate subjected to opposite electric potentials on the top and bottom surfaces of the laminate. Nondimensionalized critical electric potentials are

$$\bar{\psi} = \psi d_0 \left(\frac{a}{h}\right)^3$$

(15)

where $d_0 = 10^{-11}$ C/N. A 4 x 4 quadratic element mesh is used in the finite element analysis and the results are in excellent agreement with theoretical results. Table 4 shows that the nondimensionalized buckling load changes little for $a/h \geq 60$.

7. Summary and Conclusions

This paper has focused on using a hierarchic finite element formulation for the geometric nonlinear analysis of piezothermoelastic composite plates subjected to both mechanical and self-strain (thermal and electric field) loadings for the determination of the buckling loads for smart composite plate structures. Geometric nonlinearity has been
included in the von Karman sense, i.e., large transverse displacements with small inplane
displacements. A mixed formulation in which an independent discretization of the transverse
shear stress resultants at the Gauss integration points using standard Lagrangian interpolation
in addition to the displacement, rotation, and electric potential variables expressed in terms of
hierarchic finite elements (quadratic, cubic and quartic) have been used to construct the
element level algebraic equations. Thermoelastic and pyroelectric effects are part of the
constitutive equations. Since the buckling load multiplier does not multiply the electric
potential variables, condensation of these variables is at the global level.

Results for mechanically and self-strained (thermal and electric field) loaded
composite plates have been presented. The results demonstrate the impact of piezoelectric
coupling on the buckling load magnitudes by calculating the buckling loads that include the
piezoelectric effect (coupled) and exclude the effects (uncoupled).

As would be expected, the relatively weak PVDF layers do not significantly alter the
calculated results when considering piezoelectric coupling. The net increase is about 3% for
the thermal loaded ten-layer laminate (PVDF/0/90/0/90)s.

However, adding the relatively stiff PZT as the top and bottom layers produces
significant differences between the uncoupled and coupled results. For the mechanically
loaded six-layer laminate (PZT/0/90)s (Varelis and Saravanos, 2002) results in a buckling
load increase of over 30% for the first four buckling modes of the uniaxially compressed
plate. For the thermally loaded ten-layer laminate (PZT/0/90/0/90)s, a reversal of stress is
required to cause buckling in the coupled analyses due to the sign on the pyroelectric
constant for the PZT material. Neglecting the sign change, an increase of approximately

67% is observed in the absolute buckling load magnitude for the coupled analysis compared with the uncoupled analysis.

Determining the buckling loads via geometric nonlinear analysis with small, mechanical notational loads has been shown to produce essentially the same answers as predicted by eigenvalue analysis for composite laminates with either PVDF or PZT piezoelectric materials on the top and bottom surfaces.

Acknowledgements

The authors wish to acknowledge the financial support provided by the University of Kentucky Center for Computational Sciences for partial support of the research reported in this paper. The views contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the University of Kentucky, Center for Computational Sciences.

REFERENCES

Datchanamourty B, Nonlinear Static, Buckling and Dynamic Analysis of Laminated Piezothermoelastic Composite Plate Using Reissner-Mindlin Theory Based on a Mixed Hierarchic Finite Element Formulation, Ph.D., Civil Engineering, May 2008.

Figure Captions

Figure 1. Layout of an N-layer Composite Laminate

Figure 2. Hierarchic Lagrangian Finite Elements

Figure 3. Transverse Shear Stress Resultant Interpolation Points

Figure 4. Nonlinear Buckling Response for a Symmetric Piezoelectric Composite Laminate (PZT/0/90)s Subjected to a Uniaxial Line Load ($Q_{ref} = -1$ kN/m)

Figure 5. Nonlinear Thermal Buckling for a Ten-Layer Symmetric Piezoelectric Composite Laminate (PVDF/0/90/0/90)s for $a/h = 40$
Table 1. Critical Buckling Loads (kN/m) of a Symmetric Piezoelectric Composite Laminate (PZT/0/90)s Subjected to a Uniaxial Line Load

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UC¹</td>
<td>UC¹</td>
<td>C²</td>
<td>UC¹</td>
<td>C²</td>
</tr>
<tr>
<td>(1,1)</td>
<td>5.37</td>
<td>5.33</td>
<td>7.22</td>
<td>5.37</td>
<td>7.27</td>
</tr>
<tr>
<td>(2,1)</td>
<td>9.00</td>
<td>8.98</td>
<td>11.94</td>
<td>9.01</td>
<td>11.97</td>
</tr>
<tr>
<td>(4,1)</td>
<td>27.20</td>
<td>26.70</td>
<td>35.60</td>
<td>27.51</td>
<td>36.11</td>
</tr>
</tbody>
</table>

¹UC ≡ Uncoupled Piezoelectric Analysis
²C ≡ Coupled Piezoelectric Analysis
Table 2. Nondimensionalized Thermal Buckling Loads (\bar{T}) for a Ten-Layer Symmetric Piezoelectric Composite Laminate (PVDF/0/90/0/90)s

<table>
<thead>
<tr>
<th>a/h</th>
<th>Analytical</th>
<th>MC^1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UC^2</td>
<td>UC^2</td>
</tr>
<tr>
<td>5</td>
<td>1.457</td>
<td>1.457</td>
</tr>
<tr>
<td>10</td>
<td>1.811</td>
<td>1.813</td>
</tr>
<tr>
<td>15</td>
<td>1.898</td>
<td>1.899</td>
</tr>
<tr>
<td>20</td>
<td>1.930</td>
<td>1.932</td>
</tr>
<tr>
<td>25</td>
<td>1.946</td>
<td>1.947</td>
</tr>
<tr>
<td>30</td>
<td>1.954</td>
<td>1.956</td>
</tr>
<tr>
<td>35</td>
<td>1.960</td>
<td>1.961</td>
</tr>
<tr>
<td>40</td>
<td>1.963</td>
<td>1.964</td>
</tr>
<tr>
<td>60</td>
<td>1.969</td>
<td>1.970</td>
</tr>
<tr>
<td>80</td>
<td>1.971</td>
<td>1.972</td>
</tr>
<tr>
<td>100</td>
<td>1.972</td>
<td>1.973</td>
</tr>
<tr>
<td>1000</td>
<td>1.973</td>
<td>1.975</td>
</tr>
</tbody>
</table>

^1MF ≡ Mixed Formulation

^2UC ≡ Uncoupled Piezoelectric Analysis

^3C ≡ Coupled Piezoelectric Analysis
Table 3. Nondimensionalized Thermal Buckling Loads (\(\bar{T} \)) for a Ten-Layer Symmetric Piezoelectric Composite Laminate (PZT/0/90/0/90)s

<table>
<thead>
<tr>
<th>a/h</th>
<th>MF¹</th>
<th>UC²</th>
<th>C³</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4.208</td>
<td>-6.584</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>5.475</td>
<td>-9.010</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>5.799</td>
<td>-9.675</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>5.922</td>
<td>-9.931</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>5.981</td>
<td>-10.055</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>6.013</td>
<td>-10.123</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>6.033</td>
<td>-10.165</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>6.045</td>
<td>-10.192</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>6.069</td>
<td>-10.242</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>6.077</td>
<td>-10.260</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>6.081</td>
<td>-10.268</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>6.088</td>
<td>-10.283</td>
<td></td>
</tr>
</tbody>
</table>

¹MF ≡ Mixed Formulation
²UC ≡ Uncoupled Piezoelectric Analysis
³C ≡ Coupled Piezoelectric Analysis
Table 4. Nondimensionalized Electric Potentials ($\overline{\psi}$) of a Ten-Layer Symmetric Piezoelectric Composite Laminate (PVDF/0/90/0/90)s Under Piezoelectric Buckling

<table>
<thead>
<tr>
<th>a/h</th>
<th>Analytical</th>
<th>MF<sup>1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2.138</td>
<td>2.139</td>
</tr>
<tr>
<td>10</td>
<td>2.659</td>
<td>2.661</td>
</tr>
<tr>
<td>15</td>
<td>2.786</td>
<td>2.788</td>
</tr>
<tr>
<td>20</td>
<td>2.834</td>
<td>2.836</td>
</tr>
<tr>
<td>25</td>
<td>2.856</td>
<td>2.858</td>
</tr>
<tr>
<td>30</td>
<td>2.868</td>
<td>2.871</td>
</tr>
<tr>
<td>35</td>
<td>2.876</td>
<td>2.878</td>
</tr>
<tr>
<td>40</td>
<td>2.881</td>
<td>2.883</td>
</tr>
<tr>
<td>60</td>
<td>2.890</td>
<td>2.892</td>
</tr>
<tr>
<td>80</td>
<td>2.893</td>
<td>2.895</td>
</tr>
<tr>
<td>100</td>
<td>2.894</td>
<td>2.897</td>
</tr>
<tr>
<td>1000</td>
<td>2.897</td>
<td>2.899</td>
</tr>
</tbody>
</table>

¹MF ≡ Mixed Formulation
Figure 1. Layout of an N-layer Composite Laminate
Hierarchic Lagrangian Element Nodes

(a) Quadratic

(b) Cubic

(c) Quartic

- Corner Node
- Hierarchic Node

a. Hierarchic Lagrangian Element Nodes
Corner node shape functions

\[N_1 = \frac{1}{4}(1-\xi)(1-\eta) \quad N_2 = \frac{1}{4}(1+\xi)(1-\eta) \]
\[N_3 = \frac{1}{4}(1+\xi)(1+\eta) \quad N_4 = \frac{1}{4}(1-\xi)(1+\eta) \]

\[N_5 = \frac{1}{4}(\xi^2-1)(1-\eta) \quad N_6 = \frac{1}{4}(1+\xi)(\eta^2-1) \]
\[N_7 = \frac{1}{4}(\xi^2-1)(1+\eta) \quad N_8 = \frac{1}{4}(1-\xi)(\eta^2-1) \]
\[N_9 = \frac{1}{4}(\xi^2-1)(\eta^2-1) \]

Quadratic hierarchic shape functions

\[N_{10} = \frac{1}{12}(\xi^3-\xi)(1-\eta) \quad N_{11} = \frac{1}{12}(1+\xi)(\eta^3-\eta) \]
\[N_{12} = \frac{1}{12}(\xi^3-\xi)(1+\eta) \quad N_{13} = \frac{1}{12}(1-\xi)(\eta^3-\eta) \]
\[N_{14} = \frac{1}{12}(\xi^3-\xi)(\eta^2-1) \quad N_{15} = \frac{1}{12}(\xi^2-1)(\eta^3-\eta) \]
\[N_{16} = \frac{1}{36}(\xi^3-\xi)(\eta^3-\eta) \]

Cubic hierarchic shape functions

\[N_{17} = \frac{1}{48}(\xi^4-1)(1-\eta) \quad N_{18} = \frac{1}{48}(\eta^4-1)(1+\xi) \]
\[N_{19} = \frac{1}{48}(\xi^4-1)(1+\eta) \quad N_{20} = \frac{1}{48}(\eta^4-1)(1-\xi) \]
\[N_{21} = \frac{1}{48}(\xi^4-1)(\eta^2-1) \quad N_{22} = \frac{1}{48}(\eta^4-1)(\xi^2-1) \]
\[N_{23} = \frac{1}{144}(\xi^4-1)(\eta^3-\eta) \quad N_{24} = \frac{1}{144}(\eta^4-1)(\xi^3-\xi) \]
\[N_{25} = \frac{1}{576}(\xi^4-1)(\eta^4-1) \]

Quartic hierarchic shape functions

b. Hierarchic Lagrangian Shape Functions

Figure 2. Hierarchic Lagrangian Finite Elements
Figure 3. Transverse Shear Stress Resultant Interpolation Points

(a) Quadratic

(b) Cubic

(c) Quartic

- Corner Node
- Integration Points

Figure 3. Transverse Shear Stress Resultant Interpolation Points
Figure 4. Nonlinear Buckling Response for a Symmetric Piezoelectric Composite Laminate (PZT/0/90)s Subjected to a Uniaxial Line Load \((Q_{\text{ref}} = -1 \text{ kN/m})\)
Figure 5. Nonlinear Thermal Buckling for a Ten-Layer Symmetric Piezoelectric Composite Laminate (PVDF/0/90/0/90)s for a/h = 40