Easy Eldo Simulation Using
run_eldo_on_cell.rb

TO: Joseph Elias (JFE)
BY: Chris Magruder (HMN)
DATE: 07/17/07
MEMO: HMN-036
CC: PAB CIX GVL TWJ USC PED
KEYWORDS: Eldo Simulation
Outline

1. Why use `run_eldo_on_cell.rb`?
2. Setting up a simulation directory
 1. Why do you need a simulation directory?
 2. Required `run_eldo_on_cell.rb` Files
 1. Sample File Location
 2. Rarely Edited Files
 3. Frequently Edited Files
3. Command Line Options
4. Command Line Execution
5. Results Directory
 1. Location
 2. Generated Files
 1. By `run_eldo_on_cell.rb`
 2. By Eldo
 3. Ways to View Results
A. Sample Files
Why use `run_eldo_on_cell.rb`?

- To easily run eldo
- To compare layout extracted sim to schematic sim
- To simulate one bias condition across process corners and/or temperature
- To simulate one bias condition on multiple cells
Setting up a simulation directory

• Why do you need a simulation directory?
 • `run_eldo_on_cell.rb` uses input files to get all the information needed to extract the netlists and create the eldo simulation files

 • Having properly named files reduces the number of command line options needed when executing

 • Easy to re-run simulations
Setting up a simulation directory

Required run_eldo_on_cell.rb Files

- **inc_list**
 - Contains path to models to use per library
- **eldo_opt_file**
 - Contains options for the eldo simulation

bias_list
- Contains bias conditions for the pins of the cells

cell_list
- Contains library, cell, temp, corner, IC to be simulated

readout_pins
- Contains list of pins that will be measured

SEE APPENDIX A FOR SAMPLE FILES
Setting up a simulation directory - Required Files

- **Sample Files**
 - A copy of all required files can be found at:

 /proj/module_automation/golden/module_automation/ruby/run_eldo_on_cell_files

- **Rarely Edited Files**
 - *inc_list*
 - Copy from link above
 - One time addition of library and models
 - *eldo_opt_file*
 - Copy from link above
 - Generic Eldo option file, all lines get copied into .cir file

SEE APPENDIX A FOR SAMPLE FILES
Setting up a simulation directory - Required Files

Frequently Edited Files

<table>
<thead>
<tr>
<th>File Name</th>
<th>Controls</th>
<th>Reason To Change</th>
<th>Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>readout_pins</td>
<td>Which pins in netlist get reported by eldo</td>
<td>Change pins measured by eldo</td>
<td>.chi file</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.tr0, .sw0, .ac0 files</td>
</tr>
<tr>
<td>bias_list</td>
<td>Analysis Type</td>
<td>Change Analysis (Single Point, DC Sweep, Transient)</td>
<td>Simulation settings in .cir file</td>
</tr>
<tr>
<td></td>
<td>Bias Conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cell_list</td>
<td>Cells to simulate Corner Model Temp IC Model</td>
<td>Add/remove cells from simulation</td>
<td>Cells that are simulated w/ execution of script</td>
</tr>
</tbody>
</table>
Command Line Options

• **General Options**
 - `-RC_load <path to file>`
 - Use to simulate R & C loading effects
 - `-no_layout`
 - Use to perform schematic simulation only
 - `-useDDC`
 - Use to force a specific DDC in storing simulation results
 - `-FFT`
 - Perform FFT on pins specified in `readout_pins` file for frequency range of 0-10 GHz

• **Schematic Simulation Options**
 - `-netlist_par <path to file>`
 - Use to simulate a parameterized schematic

SEE APPENDIX A FOR SAMPLE FILES
Command Line Options

• Layout Simulation Options
 • `layout_netlist <path to netlist>`
 • Use to run sim on an existing layout extracted netlist
 • `noCaps`
 • Extract netlist with no capacitors
 • `noRes`
 • Extract netlist with no resistors

• If required files are not set up in run dir use:
 • `cdslib <path>`
 • `cell_list <path>`
 • `eldo_opt_file <path>`
 • `include_list <path>`
 • `readout_pins <path>`
 • `pin_bias_list <path>`
Command Line Execution

To be able to execute the script follow these steps:

1. Set up Required files in simulation directory
2. Make current working directory the simulation directory
3. Enter `run_eldo_on_cell.rb`
 - Include which ever options you have chosen

Example:

```
run_eldo_on_cell.rb --no_layout --FFT
```
Results Directory

• Location
 • When Eldo is finished running it will report back the location of results.
 • Ex:
 Eldo Finished, results can be found in
 /home/hmn/WA/c8_etest/hspice/c8Et/c8Et_MD510
 2_b/schematic_sim_tt_30C_trtc

• run_eldo_on_cell.rb stores simulation results
 in: /home/<usr>/WA/<DDC>/hspice/<library>/</cell>/
Results Directory

• **Generated files**- By `run_eldo_on_cell.rb`

 • `eldo.replay`
 • Contains command to launch eldo if changes are made to `.cir` file

 • `eldo.log`
 • Contains information regarding the execution of `run_eldo_on_cell.rb`
 • Options Used, launch directory, paths to input files

 • `results.csv`
 • CSV file of all read out pin data extracted from `netlist.chi`

 • `schematic_ext.nl`
 • Schematic netlist

 • `layout_ext.nl`
 • Layout Extracted netlist

 • `<cell name>.cir`
 • Circuit file used to launch eldo with all simulation settings compiled by `run_eldo_on_cell.rb`
Results Directory

• Generated files- By Eldo
 • `<cell name>.chi`
 • Results file for simulation
 • Read out pin out data is between a line that starts with X and line that starts with Y
 • `<cell name>.sw0*` (DC sweep only)
 • Binary file containing data/waveforms from DC simulation
 • `<cell name>.tr0*` (Transient sim only)
 • Binary file containing data/waveforms from transient simulation
 • `<cell name>.ac0*` (with use of `-FFT`)
 • Binary file containing data from FFT analysis

(*) Files can be viewed using `wavemaster`
Results Directory

• Ways to View Results
 • View binary files using wavemaster
 • Import results.csv into excel
 • Copy raw data from <cell name>.chi file
Appendix A: Sample Files

• Outline:
 • Required Files
 • inc_list
 • eldo_opt_file
 • bias_list
 • cell_list
 • readout_pins
 • Optional Files
 • RC_load
 • netlist_par
Appendix A: Required Files

- inc_list
 - [IC] and [PC] get substituted with the interconnect value and process corner value specified in the cell list. This enables multiple corner simulations for one cell
Appendix A: Required Files

- **eldo_opt_file**
 - Contains basic eldo simulation settings used for every simulation
Appendix A: Required Files

- **bias_list**
 - **Format**
 - `<pin>,<voltage>`

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Replace <code><voltage></code> with</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Value</td>
<td><code><value></code></td>
</tr>
<tr>
<td>DC Sweep</td>
<td><code>swp,<Vstart>,<Vstop>,<Vstep></code></td>
</tr>
<tr>
<td>Transient</td>
<td><code>pulse(<V1><V2><Tdelay><RiseT><FallT><PulseW><Period>)<Tprint>,<Tstop>)</code></td>
</tr>
</tbody>
</table>
Appendix A: Required Files

- **cell_list**
 - **Format**
 - `<Library>,<Cell>,<PC>,<Temperature_C>,<IC>`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Typical Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><PC></code></td>
<td><code>tt, ff, ss, sf, fs</code></td>
</tr>
<tr>
<td><code><IC></code></td>
<td><code>trtc, hrlc, lrc</code></td>
</tr>
</tbody>
</table>
Appendix A: Required Files

- **readout_pins**
 - **Format**
 - `<v or i>, <pin name>`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Typical Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><v or i></code></td>
<td><code>v, i</code></td>
</tr>
</tbody>
</table>
Appendix A: Optional Files

- **RC_load**
 - **Format**
 - `<Pin1>,<Pin2>,<Resistor value>, <Capacitor value>`

- **netlist_par**
 - **Format**
 - `<Parameter>,<Value>`