Class 13: Flip Flops

Topics:
1. TOC
2. Introduction
3. Types of Flip Flops
4. Types of Flip Flops
5. D Flip Flop Operation
6. D Flip Flop Master Circuit
7. D Flip Flop Circuit
8. Tri-State Inverter
9. Flip-Flop Ideas
10. Flip-Flop Ideas
Class 13: Flip Flops
Introduction (Martin c.7)

Flip Flops basics:
• Storage elements for synchronous circuits (what is synchronous?)
• Break up any race conditions or oscillations, i.e., feedback loops around a cyclic logic circuit
• Inputs: normally have 1 or 2 input signals and a clock
• Outputs: differential outputs Q and Q’
 • output latched or stored on rising/falling edge of clock
 • output stable until next rising/falling edge of clock
• Can optionally have set and/or reset asynchronous inputs
 • regardless of state of the clock, the outputs will either be set to a 1 or reset to a 0
• Typical techniques
 • master_slave
 • edge_sensitive
• Typical configurations:
 • SR (set_reset)
 • D
 • JK
 • T (toggle)
• D FF is the most common for ICs

SR flip flop symbol
• changes on positive going clock edge

SR flip flop symbol
• changes on negative going clock edge
Class 13: Flip Flops
Types of Flip Flops (Martin c.7)

• D

<table>
<thead>
<tr>
<th>D</th>
<th>Q_{n+1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

• SR

<table>
<thead>
<tr>
<th>S</th>
<th>R</th>
<th>Q_{n+1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Q_n</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Indeterminate</td>
</tr>
</tbody>
</table>

• JK

<table>
<thead>
<tr>
<th>J</th>
<th>K</th>
<th>Q_{n+1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Q_n</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Q_n</td>
</tr>
</tbody>
</table>

• T

<table>
<thead>
<tr>
<th>T</th>
<th>Q_{n+1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q_{n+1}</td>
</tr>
<tr>
<td>1</td>
<td>Q_{n+1}</td>
</tr>
</tbody>
</table>

realized by tying J and K together from a JK FF
Class 13: Flip Flops
Types of Flip Flops (Martin c.7)

• D
 • cascade of two latches with opposite clock phases
 • best choice (usually) for IC design
 • after FF is clocked, output is equal to the D value just before the clock changed

• SR
 • same as D FF if S=D and R=D’
 • can be set, reset, or remain in its previous state
 • indeterminate state exists if S=R=high when CLK=low
 • major limitation is output can be affected by the input at any time the CLK is high, a.k.a., noise problem

• JK
 • often used for synchronous machines or counters
 • J=1, K=0 FF is set
 • J=0, K=1 FF is reset
 • J=0, K=0 No change
 • J=1, K=1 FF state toggles (difference between JK and SR, but same noise limitation)

• T
 • useful in counters
Class 13: Flip Flops

D Flip Flop Operation (Martin c.7)

Clk is ‘1’, implies master active, slave latched
B=D=1 since 1 or anything is 1 in ‘c’

Clk is ‘1’, implies master active, slave latched
B=D=0 since 1 or anything is 1 in ‘d’

Clk=0

Clk is ‘0’, implies master latched, slave active
Q’=D’=0 since 1 or anything is 1 in ‘h’

D=0

Clk is ‘0’, implies master latched, slave active
Q’=D’=0 since master disabled by ‘a’ and ‘b’
Class 13: Flip Flops

D Flip Flop Master Circuit (Martin c.7)

Figure 7.17 The logic diagram of a master–slave D flip-flop.

[Diagram of D Flip Flop Master Circuit]

Joseph A. Elias, PhD
Class 13: Flip Flops
D Flip Flop Circuit (Martin c.7)

\[S = 1 : Q = 0 \text{ immediately, } Q' = S' \text{ after inv delay} \]
\[R = 1 : Q' = 1 \text{ immediately, } Q = R' \text{ after inv delay} \]
Class 13: Flip Flops
Tristate Inverter (Weste c.2)

- Cascade of a transmission gate with an inverter
- C=0 → C=1: Z is tristated, i.e., A does not influence Z
- C=1 → C=0: Z = A'
Class 13: Flip Flops
Flip Flop Ideas (Martin c.7)

- Biphase D FF
- asynchronous Set and Reset
- Inverter Based

- Biphase D FF
- transmission gates used
- NOR based

Figure 7.27 A transmission-gate-based master–slave D flip-flop.
Class 13: Flip Flops
Flip Flop Ideas (Martin c.7)

- Biphase JK FF
 - transmission gates used
 - Inverter based

Design Assignment
- Biphase D FF (clk, clk’)
- buffer the D input with a tristate inverter
- Inverter based
- Asynchronous Reset
- hint: can optimize the layout by rearranging ckt