ANALYSIS OF “POOR MAN’S NAVIER–STOKES”
AND THERMAL ENERGY EQUATIONS FOR
HIGH-RAYLEIGH NUMBER TURBULENT CONVECTION

J. M. McDonough

Departments of Mechanical Engineering and Mathematics
University of Kentucky, Lexington, KY 40506-0503

E-mail: jmmcd@uky.edu
Website URL: http://www.engr.uky.edu/~acfd

Acknowledgments: Reported work supported in part by grants from AFOSR and NASA-EPSCoR

Presented at American Physical Society 58th Division of Fluid Dynamics Meeting, Chicago, IL, Nov. 20–22, 2005
Efficient LES Models Able to Account for Interactions of Physics on Small Scales Still in Their Infancy

Physically-Realistic Temporal Fluctuations Required for Such Models

Implies Need to Retain as Much of Governing Equations as Possible within Framework of Efficient Model

Possible Approach: use symbol (or, more accurately, a pseudo-differential operator) of governing equations

Present Work Describes Way to Do This, and Demonstrates Outcomes in Terms of Comparisons with Actual Physics
OUTLINE OF PMNS + THERMAL ENERGY EQ. DERIVATION

 - Invoke **Leray projection** to remove ∇p from momentum equations
 - Assume **Fourier representations** for dependent variables u, v, T with basis functions exhibiting complex exponential-like differentiation properties
 - Construct **Galerkin ODEs**

\[
\begin{align*}
\dot{a}_k &= -\sum_{\ell,m=1}^{\infty} A_{\ell m k}^{(1)} a_{\ell}^2 + A_{\ell m k}^{(2)} a_m b_{\ell} - \frac{|k|^2}{Re} a_k \\
\dot{b}_k &= -\sum_{\ell,m=1}^{\infty} B_{\ell m k}^{(1)} b_{\ell}^2 + B_{\ell m k}^{(2)} a_m b_{\ell} - \frac{|k|^2}{Re} b_k - \frac{Gr}{Re} c_k \\
\dot{c}_k &= -\sum_{\ell,m=1}^{\infty} C_{\ell m k}^{(1)} a_m c_{\ell} + C_{\ell m k}^{(2)} b_m c_{\ell} - \frac{|k|^2}{Pe} c_k, \quad k = 1, \ldots, \infty
\end{align*}
\]
Decimate infinite system to single wavevector

\[\dot{a}_k + A_{lmk}^{(1)} a_k^2 + A_{lmk}^{(2)} a_k b_k = -\frac{|k|^2}{Re} a_k \]

\[\dot{b}_k + B_{lmk}^{(1)} b_k^2 + B_{lmk}^{(2)} a_k b_k = -\frac{|k|^2}{Re} b_k - \frac{Gr}{Re^2} c_k \]

\[\dot{c}_k + C_{lmk}^{(1)} a_k c_k + C_{lmk}^{(2)} b_k c_k = -\frac{|k|^2}{Pe} c_k \]

Remark: right-hand sides are symbols, and left-hand sides similar to pseudo-differential operators

Use simple Euler time integrators (and suppress indices)

\[a^{(n+1)} = a^{(n)} - \tau \left[\frac{|k|^2}{Re} a^{(n)} + A^{(1)} (a^{(n)})^2 + A^{(2)} a^{(n)} b^{(n)} \right] \]

\[b^{(n+1)} = b^{(n)} - \tau \left[\frac{|k|^2}{Re} b^{(n)} + B^{(1)} (b^{(n)})^2 + B^{(2)} a^{(n)} b^{(n)} + \frac{Gr}{Re^2} c \right] \]

\[c^{(n+1)} = c^{(n)} - \tau \left[C^{(1)} a^{(n)} c^{(n)} + C^{(2)} b^{(n)} c^{(n)} \right] / \left(1 + \frac{|k|^2}{Pe} \right) \]
PMNS/Thermal Energy Eq. Derivation (Cont.)

 \[a^{(n+1)} = \beta_1 a^{(n)}(1-a^{(n)}) - \gamma_{12} a^{(n)} b^{(n)} \]

 \[b^{(n+1)} = \beta_2 b^{(n)}(1-b^{(n)}) - \gamma_{21} a^{(n)} b^{(n)} + \alpha_T c^{(n)} \]

 \[c^{(n+1)} = -\left(\gamma_{uT} a^{(n+1)} + \gamma_{vT} b^{(n+1)} \right) c^{(n)} / (1+\beta_T) + c_0 \]

- **Total of 9 bifurcation parameters:** \(\beta_1, \beta_2, \beta_T, \gamma_{12}, \gamma_{21}, \gamma_{uT}, \gamma_{vT}, \alpha_T, c_0 \)

- In a complete LES all computed “on the fly” based on resolved-scale

- **Physical Interpretation of \(\gamma_{ij} \)'s Treated in** (*McDonough et al., JoT, 2003*)

- **Other Parameters to Be Discussed Here**
DIMENSIONLESS PARAMETERS

- Scaling Employed Leads to $Re, Pe, Gr/Re^2$

- Must Relate These to Bifurcation Parameters βs, and α

- But Equations Solved (i.e., evaluated) on Small Local Subdomains, Im- plying Dimensionless Parameters Need Rescaling

 - $Re \rightarrow Re_h \equiv \frac{h^2||\nabla u||}{v}$, $Pe \rightarrow Pe_h \equiv \frac{h^2||\nabla u||}{v}$, $Gr \rightarrow Gr_h \equiv \frac{\beta g \delta T h^3}{v^2}$

- Rescaled parameters related to PMNS eqs. bifurcation parameters as

 $$\beta_{1,2} = 4 \left(1 - \frac{|k|}{Re_h} \right)^2, \quad \beta_T = Pe_h, \quad \alpha_T = Gr_h / Re_h^2$$

- Desirable to Express These in Terms of Original (un-rescaled) Dimen- sionless Parameters to Permit Direct Comparisons with Experiment
Define Three Constants

\[C_1 = \tau \left| k \right|^2, \quad C_{2,i} = \Delta u_i h_i, \quad C_3 = \left(\sum_i h_i^2 \right) \left[\sum_{ij} (\Delta u_i / h_j)^2 \right]^{1/2} \]

Then It Can Be Shown That

\[Re = \frac{C_1 / C_{2,i}}{1 - \beta_i / 4}, \quad \text{and} \quad Pe = \frac{C_1}{C_3 \beta_T} \]

It Can Also Be Shown That Using \(Ra = GrPr \) Leads to

\[Ra = \frac{\alpha_T}{\tau} \frac{C_1^2}{C_{2,i} C_3 \beta_T (1 - \beta_i / 4)} \]

Finally, It Can Be Shown That

\[Pr = \frac{1}{\beta_T} (1 - \beta_2 / 4), \quad \text{and} \quad Nu = 1 + \frac{C_1 / C_3}{\beta_T} \frac{\langle b,c \rangle}{\Delta c/h_2} \]
RESULTS

- Previously Have Shown Ability of PMNS + Thermal Energy Equation to Match Experimental Results of Gollub & Benson (*JFM*, 1980)

- Results mainly qualitative

- Time series produced by model resemble those of experiments as model parameter related to Ra is increased

- But does demonstrate ability of symbol/pseudo-differential operator based models to replicate temporal physics

- Here, Additional More Quantitative Results Associated with Reproducing Experimental Correlations Are Presented
RESULTS (Cont.)

- Comparisons Made with Cioni *et al.* Data (*JFM*, 1997)
- High-Ra Convection with $Pr = 0.025$

![Graph showing Nusselt Number vs. Rayleigh Number with two lines and data points, indicating approximate locations of bifurcations in experiments of Cioni *et al.*]
SUMMARY AND CONCLUSIONS

- Outline Given for Derivation of Discrete Dynamical System Proposed for Use as Part of LES-Like SGS Models

- Correspondence Between Model Bifurcation Parameters and Those of Original Governing Equations Demonstrated

- Possibility to Accurately Match Experimental Data Shown in Terms of Both Temporal Fluctuations and Global Quantities

- Suggests Form of Model Able to Retain Considerable Physical Detail Despite Its Simplicity and Efficiency

- Hence, Models of This Form May Be Useful as SGS Models for LES (and maybe RANS), and Also for Real-Time Control