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Decarbonization of existing electricity generation portfolios with large-scale renewable resources such as wind and solar photo-
voltaic (PV) facilities is important for a transition to a sustainable energy future. This paper proposes an ultra-fast optimization
method for economic dispatch of firm thermal generation using high granularity, one minute resolution load, wind, and solar PV
data to more accurately capture the effects of variable renewable energy (VRE). Load-generation imbalance and operational cost are
minimized in a multi-objective clustered economic dispatch problem with various generation portfolios, realistic generator flexibility,
and increasing levels of VRE integration. The economic feasibility of thermal dispatch scenarios is evaluated through a proposed
method of levelized cost of energy (LCOE) for clustered generation portfolios. Effective renewable economics is applied to assess
resource adequacy, annual carbon emissions, renewable capacity factor, over generation, and cost to build between thermal dispatch
scenarios with incremental increases in VRE penetration. Solar PV and wind generation temporally complement one another in the
region studied, and the combination of the two is beneficial to renewable energy integration. Furthermore, replacing older coal units
with cleaner and agile natural gas units increases renewable hosting capacity and provides further pathways to decarbonization.
Minute-based chronological simulations enable the assessment of renewable effectiveness related to weather-related variability and
of complementary technologies, including energy storage for which a sizing procedure is proposed. The generally applicable methods
are regionally exemplified for Kentucky, USA including 8 scenarios with 4 major year-long simulated case studies and 176 subcases
using high performance computing (HPC) systems.

Index Terms—renewable energy, solar PV, wind energy, thermal generation, generation portfolio, decarbonization, optimal economic
dispatch, electric power system adequacy.

I. INTRODUCTION

Changes in policy and increased awareness of environmental
impacts are driving the development and implementation of
technology to significantly reduce greenhouse gas (GHG)
emissions including carbon dioxide (CO2). According to the
International Energy Agency (IEA), electric power genera-
tion around the world accounts for about 40% of energy-
related CO2 emissions and offers significant opportunities for
emissions reduction with increased variable renewable energy
(VRE) generation [1].

One of the major challenges with the integration of in-
creased clean energy is resource adequacy, or the ability to
produce sufficient generation to meet customer loads at all
hours due to the weather-dependent variability of solar PV
and wind resources. Increased renewable penetration requires
cost-effective support of firm, agile generation that can turn on
quickly when needed and operate as long as needed, and/or
long-term energy storage to handle extreme weather, peaking
periods, and periods of low renewable generation [2]. Hourly
analysis of generation including VRE may not be able to
accurately evaluate the capability of firm generation to match
demand with rapidly changing VRE power output, which
changes realistically at the minutely-scale.

To evaluate pathways for decarbonization through gradually
increased renewable penetration backed by firm generation, a

method of ultra fast minute to minute (M-M) multi-objective
optimization (MOO) was developed for clustered generation
economic dispatch and implemented on high performance
computing (HPC) systems, as described in the current paper.
The proposed general method was applied for a case study
in Kentucky, USA using actual load, renewable, and fossil
generating unit data provided by the state’s largest utility
Louisville Gas and Electric and Kentucky Utilities (LG&E and
KU), part of the PPL Corporation family of companies. Carbon
dioxide emissions from electricity generation in Kentucky
have already declined by more than 40% from 2010 through
2021, due primarily to the closure of coal-fired generators and
the addition of cleaner-burning natural gas combined cycle
and renewables [3], [4]. In the absence of federal or state
policy requiring decarbonization, electric utilities operating in
Kentucky have voluntarily committed to increase renewable
generation and reduce carbon dioxide emissions, with some
pledging to achieve net-zero emissions by 2050 [5]. As addi-
tional retirements of coal-fired electricity generating units are
scheduled to occur before 2035, the important decision arises
of what type of generating resources to build next [6].

Minute-to-minute analysis also enables detailed studies into
energy storage requirements and imbalance compensation to
quantify the mismatch between weather-based generation and
expected demand on short and long-term timescales. Economic
and CO2 emissions analysis of optimization results were
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Fig. 1: Maps of Kentucky annual average global horizontal irradiance and wind speed at 100 meter hub height from NREL [7]. Kentucky experiences a mild
climate with large seasonal variation, and is located at approximately 37.5°N by -85.29°E.

performed with capital expenditures (CAPEX), cost to build,
per clustered generation type, carbon dioxide emissions per
generation type, and a proposed method of levelized cost of
energy (LCOE) for generation portfolios considering fuel cost
and cost of operation.

A first main novel contribution of the research described in
the current paper is the ultra-fast optimization of dispatchable
generation to minimize generation/demand imbalance and cost
for a chronological year of minutely data using high perfor-
mance computing (HPC) systems. To the authors’ knowledge,
this study is the first to consider such high resolution in eco-
nomic dispatch of thermal generation considering operational
limitations. A second main contribution is represented by the
proposed method for improved energy storage sizing to reduce
undergeneration imbalances based on the minutely simulation.

Additional contributions include proposed methods for eval-
uating the economic and technical feasibility of increased
renewable penetration with high seasonal generation variabil-
ity. A method is proposed for calculating the LCOE of a
generation portfolio derived from equations and projections
published by the National Renewable Energy Laboratory
(NREL) [8]. Minute to minute chronological firm dispatch is
used to assess the limitations imposed by operational flexibility
and the requirements of energy storage for decarbonization
beyond 80%.

The paper is structured as follows: a review of relevant
global and regional developments and an introduction to
the Kentucky specific studies in the next section, detailed
economic load dispatch problem formulation and optimiza-
tion in Section 3, and minutely simulation cases for various
generation mixes with results in Section 4. The results are
further analysed in Section 5, including a discussion of the
findings with implications to future infrastructure development
for renewable generation facilities, zero to low carbon firm
generation, and energy storage, based on widely used cost
and emission indexes. Concluding remarks are presented in
the final section.

II. GLOBAL AND REGIONAL DEVELOPMENTS AND
STUDIES

The cost of solar PV and wind power generation has reduced
significantly over the last decade; however, the intermittency
of these resources limits the maximum amount that can be
integrated into the existing generation and transmission system

without affecting the reliability of service. For example, during
a very sunny day, solar PV units can produce near rated
capacity but experience large variability in output early and
late in the day, requiring sufficient firm generation ramping
capability to maximize energy utilization and effectiveness
[9], [10]. On the other hand, a very cloudy day can cause
periods of low renewable generation, necessitating enough firm
generation capacity to fill the deficit between generation and
demand [11].

The current North American Electricity Reliability Corpora-
tion (NERC) standard commonly adopted by utilities specifies
that the frequency of under-generation events, a loss of load
expectation (LOLE), is at most 0.1 days per year or 99.97% re-
liability [2], [12]. Techno-economic analysis that accounts for
firm generation ramping capability to meet expected demand
while also minimizing operational cost is necessary to develop
feasible pathways of decarbonization. Hence, a growing field
in the scientific and technical literature focuses on analyzing
the impact of integrating variable renewable energy (VRE)
alongside firm generation in future power system planning and
operation.

Studies into increased decarbonization, i.e. the reduction of
CO2 emissions, exists throughout literature, many of which
focus on scenarios for complete generation overhaul including
Germany [13], Europe [14], [15], the US [16]–[18], and South-
east Asia [19]. Towards deep decarbonization, i.e. 80 to 100%
reduction in CO2 emissions from current levels, more than 40
studies were considered and tabulated in [20] and 88 regional
studies summarized in [21]. Within the majority of the papers
reviewed, the main focus was placed on deep decarbonization
economic feasibility rather than resource adequacy with grad-
ual renewable adoption and none simulated chronologically
minute-to-minute. This represents a significant gap in literature
that is addressed by the minutely firm generation dispatch
method proposed and the case study completed in this paper.

Limitations of short-term weather dependent VRE integra-
tion summarized in [22] have found significant mismatch
between demand and generation across time scales with in-
creased renewable annual energy contributions. A recent study
into VRE integration established feasible regional penetration
of solar PV without substantial generation violations through
economic dispatch of thermal generation with individual unit
commitment [23]. Minute-to-minute unit commitment devel-
oped within the study sought to capture the realistic contri-
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butions of firm thermal generation to compensate for dips in
VRE output due to quick changes in weather.

The impact of realistic unit commitment constraints includ-
ing built capacity, ramping limits, and turn-down capability
significantly affect system reliability simulation and results
with increased VRE penetration. Hybrid methods of economic
dispatch coupled with thermal generation operational flexi-
bility were published on studies for gradual integration of
renewable generation, e.g. [24]–[28].

Hybrid economic dispatch was further developed to group
distributed generation units into clusters, combining the con-
straints on operational flexibility from multiple plants as an
energy type [29]. Clustered unit commitment, used in this cited
study, has been found to represent unit flexibility with very
small difference in optimal solution and is significantly more
computationally efficient, up to 15 times faster than individual
units at large scale [29]–[31].

To maximize effective techno-economic integration of re-
newable generation, variability must be compensated for by
firm generation or with technologies that shift load or gen-
erated energy [22]. The resolution and range of analysis
plays a large role in the planning for and solution of supply
and demand mismatch at several time scales (diurnal, daily,
seasonal). A previous study by other authors identified that
higher resolution decarbonization studies, such as the minutely
approach proposed in the current paper, are needed to cap-
ture the nuanced interactions between system resources and
expected cost of generation [32]. It was found that tempo-
ral aggregation or time slices, deployed in many previous
studies, may not capture fundamental relationships, understate
the value of broad technology portfolios, and do not solve
time-based mismatch issues [32], [33]. Sub-hourly scheduling
and planning is not only beneficial and essential for long-
term planning but reduces expected reserves and generator
movement to balance supply and demand [33], [34].

A major barrier for widespread deep decarbonization is
represented by the seasonal mismatch or long-term mismatch
between generation and demand in the winter, when wind
and solar output are reduced [22]. Chronological simulation is
necessary to capture the challenges of long-term energy deficit
due to seasonal variability [27], [32]. Minute-based chronolog-
ical analysis, not performed in previous papers, models fast
variations not captured in typical long-term simulations and is
essential for the rating and planning of broad technologies to
ensure system reliability.

As proposed and described in the current paper, in order
to solve the hybrid clustered economic dispatch with unit
commitment constraints, optimization was employed chrono-
logically minute by minute for generation to meet load. Rather
than priority list stacking of generation by least cost or con-
ventional numerical optimization, evolutionary optimization
was employed to handle the complex formulation without
simplification, allowing for future expansion of objectives,
constraints, and scalability [26]. A heuristic multi-objective
differential evolution (MODE) type algorithm was chosen to
identify the optimal Pareto front with comparable results to
NSGA-II alternatives at a faster speed. Integrated decision
making was used with multi-objective optimization, similar

to that proposed in [35], to select a cost-minimizing solution
from minimum imbalance options.

The example region studied, Kentucky, is a land-locked
service area with a humid subtropical Koppen climate clas-
sification (Cfa), characteristic of large seasonal temperature
variation [36]. Average solar irradiance and wind speed distri-
bution is similar across the region with small pockets of higher
wind generation, as shown in the annual average maps of
Fig. 1. Renewable generation distributed across large regions
may smooth resource output variability, enabling, in principle,
more constant system generation [16], [22], [34]. Still, our
analysis of minute-to-minute solar data found that generation
may decrease from 100% to 10% capacity in as little time as
two minutes. While current solar penetration in Kentucky pose
no risk to grid reliability, if all electricity came directly from
solar and wind resources, the availability of electricity would
fluctuate greatly with the weather.

In the following, multiple scenarios of firm generation sets
were considered with varying levels of solar PV and wind
penetration to analyze paths of gradual renewable energy
integration. Four cases have been simulated with a mixture
of firm thermal generation capacity with 44 subcases of
increasing renewable penetration and a ratio of 2:1 for solar
PV to wind generation. The weather data is from 2018
and includes correlated minutely measured and geospatially-
aggregated solar irradiance and wind speed from 60+ weather
stations. Within each subcase, the gap between generation and
measured minutely load for 2018 was analyzed following gen-
eration MOO to minimize system imbalance and operational
cost.

III. ECONOMIC LOAD DISPATCH PROBLEM FORMULATION
AND OPTIMIZATION

A. Problem Formulation
On the pathway to increased future integration of VRE

resources, planning for the cost-effective dispatch of firm,
controllable, thermal generation is essential to meet demand
due to renewable energy generation variability. A minute-
based economic dispatch is used to capture the capabilities
of firm generation to complement solar PV and wind power
variation towards gradual renewable integration. Objectives for
the optimization are to minimize imbalance between gener-
ation and load as well as the price of generation operation
including fuel/consumables, operation and maintenance, and
fuel heat rate using each firm generation type. Decision vari-
ables considered for the system are the scheduled generation
output from three firm generation types, i = 1, 2, 3, i.e. coal
and natural gas of the combined cycle and combustion turbine
type, respectively, with units distributed across Kentucky.

Thermal generation clustered unit constraints such as ramp-
ing rate, i.e. the ability to alter power output in each minute,
and generation capacity limits must be considered to evaluate
the time constrained output. In clustered unit commitment, the
capacity limits are dependent upon the rated power capacity
from all distributed units in that group. The power output
of each generator, Pi(t), is bounded by two mathematical
inequality sets as described by:
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(a) (b)

Fig. 2: Kentucky state-wide utility solar PV (a) and land based wind (b) aggregated minutely power generation across the year with white dotted lines
differentiating meteorological seasons. Resources were found to be beneficially disjoint and complementary with high output from solar PV in the summer
months and wind in the winter months.

Fig. 3: Average solar PV and wind capacity factor, normalized load, and
temperature in Fahrenheit with irradiance for each week across the year. The
capacity factors for wind and solar peak in winter and summer, respectively,
illustrating the complementary nature of the renewable resources.

Pmin ≤ Pi(t) ≤ Pmax,

Pmax ∗ −RRi ≤ Pi(t)− Pi(t− 1) ≤ Pmax ∗RRi,
(1)

where a maximum rated capacity, Pmax, and minimum gen-
eration, Pmin are specified for each generator type, and the
power variation for each time step is limited by the generator
ramping rate, RRi.

From these generation-specific operational limits, a power
output is selected:

min
{
I(t) = |

∑3
i=1 Pi(t) + Pren(t)− PL(t)|, (2)

to minimize the power imbalance, I(t), between load, PL(t),
and generation considering renewable, Pren(t), and firm ca-
pability, Pi(t).

With a scheduled power output from each generation type,
the amount of fuel needed to reach that power output and
the overall cost of generation are calculated. Cost per thermal

generation dispatch within a minute of scheduling, Pr(t), is
calculated by:

min

{
Pr(t) = |

∑3
i=1(Cg + Coni +MCi) · Pi(t)|,

where Cg = HRi · FCi.
(3)

where the running cost of the generator, Cg , is a function
of the heat rate, HRi; the fuel cost, FCi; the fixed cost of
consumables for emission reduction, Coni; and MCi the fixed
cost of system maintenance.

Since thermal generation unit efficiency varies with per-
centage output for different unit types, heat rate is calculated
using the heat requirement for power considering currently
scheduled generation following:

HRi =
a · Pi(t)

2 + b · Pi(t) + c

Pi(t)
, (4)

per each generation type with thermal coefficients, a, b, c.
Heat rate integration approximates the running cost of
thermal generation at selected output power while considering
operational limitations.

B. Optimization Method

An augmented multi-objective differential evolution algo-
rithm was developed based on the concept initially proposed
in [37] and adapted to find a cost minimizing set of thermal
generation that meets minutely demand using a multi-step
process of initialization, mutation, crossover, and selection.The
optimization was integrated into the hybrid economic dispatch
and clustered unit commitment model to select the minimal
cost thermal portfolio that minimizes generation / demand
imbalance resulting from multiple populations, as depicted
in Fig. 4. In the following description of the optimization
procedure, population is used in place of iterations or the
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Fig. 4: Proposed procedure for hybrid economic dispatch and clustered unit commitment towards analyzing the limits of renewable generation with operational
flexibility. Per scenario, simulations were run chronologically for a year of minutely data to capture high renewable variability.

Algorithm 1 Pseudo-code of the implemented multi-objective
optimization algorithm for economic load dispatch based on
differential evolution.

Create an initial population G1,p with designs of selected
quantities from the firm generation types
while stopping criteria is not satisfied do

for each population, p, in Gn,p do
Sample random indices R

▷ Mutation
GM,n,p ← Gn,p[R[0]]+F (Gn,p[R[1]]−Gn,p[R[2]])
if RAND(0, 1) ≤ CR then ▷ Crossover

GU,n,p ← GM,n,p

else
GU,n,p ← Gn,p

end if
if f(GU,n,p) ≤ f(Gn,p) then ▷ Selection

Gn+1,p ← GU,n,p

else
Gn+1,p ← Gn,p

end if
end for
n← n+ 1 ▷ Increment to the next iteration

end while

number of evolution generations in order to avoid possible
confusion with electricity generation.

For initialization, the designs (i.e. sets of firm generation
output) within an initial population vector of the first genera-
tion are determined through uniform randomization:

gn,p,d = gp,low + ((gp,up − gp,low) ∗RANDp(0, 1)), (5)

where d is the design index; p, the population index; n, the
generation index with n = 1 to indicate the first generation;
Gplow, the lower population bound; and Gp,up, the upper
population bound.

To expand the search space, the designs within a population
Gn,p are mutated in order to create a new population (GM,n,p):

gM,n,p,d = gn,p,r1 + F ∗ (gn,p,r2 − gn,p,r3), (6)

where r1, r2, and r3 are distinct design indices selected from
a random permutation that cannot be equal to d, and F is
the scaling factor, producing more population diversity as it is
increased and is typically set within the range of (0,2) [37].
Based on designs from the target (Gn,p) and mutated (GM,n,p)
vectors, the cross-over process determines a vector of trial
designs (GU,n,p) as follows:

GU,n,p =

{
GM,n,p if RAND(0, 1) ≤ CR

Gn,p otherwise,
(7)

where CR is the cross-over probability. It should be noted that
a random value for each of the individual design variables is
generated as denoted by the RAND(0, 1) function. The final
step of selection compares the evaluations of the objective
function for GU,n,p and Gn,p to improve the Gn,p for the
next generation:

Gn+1,p =

{
GU,n,p if f(GU,n,p) ≤ f(Gn,p)

Gn,p otherwise.
(8)

This multi-step process, described in Alg. 1, is repeated
until a stopping criteria, represented by the maximum number
of iterations, is satisfied. The final population provides a trial
vector which populates a Pareto space of optimal designs and
represents the trade off between operational cost and total
number of imbalances in the system. The minimum imbalance
dispatch at the lowest cost is selected per minute due to the
potential for large cost penalties for significant, long-lasting
imbalances.

For each minutely optimization, the number of populations
necessary for the MODE type procedure was trialed from 10
to 400 using the correlated weather and load data across the
month of January. For each population size, the amount of
short term undergeneration was compared and the reduction
trend with the increasing number of populations was noted.
To give the best possible results for the case study, opti-
mizations were conducted at the maximum considered of 400
populations per time step. Additions to generation types and
operational constraints would require similar checks for the
optimization process.

All 176 subcases of solar PV and wind power generation
within this study were simulated using Python in parallel
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TABLE I: Ramp rates, cost coefficients, and fixed maintenance and operation costs for the three types of thermal generation considered in the case study.

Type Ramp Rate [%] a [10−3] b c Fuel Cost
[$/MMBtu]

Aux [$/MWh]

NGCC 4 0.000385 7.700745 630.0665 176 1.28
NGCT 20 0.020731 2.741114 753.0348 176 5.65
Coal 1.23 0.000001 10.5 0.00001 196 2.34

TABLE II: Summary of generation portfolio capacity with thermal and renewable energy resources. Solar and wind capacity were varied within sub-cases
and simulated to emulate gradual renewable energy integration. All values are in GW.

Case [GW] Coal NGCC NG-CCS Hydrogen NGCT Hydro Solar Wind
C 5 .7 0 0 2 .1 .1 0
NG 0 5.6 0 0 2 .1 .1 0
CS 5 .7 0 0 2 .1 0-20 0
NGS 0 5.6 0 0 2 .1 0-20 0
CSW 5 .7 0 0 2 .1 0-20 0-10
NGSW 0 5.6 0 0 2 .1 0-20 0-10
CCSSW 0 0 7.6 0 0 .1 0-20 0-10
HSW 0 0 0 7.6 0 .1 0-20 0-10

with each generation portfolio solved on a separate core of
a large high-performance computer (HPC). The optimizer
used Intel(R) Xeon(R) Gold 6144 CPUs with a frequency of
3.50GHz, which could run 400 iterations per timestep in 1.3
seconds for an overall simulation runtime of approximately
8 days per subcase for 525,600 timesteps. The procedure
illustrated in Fig. 4 can be performed for different locations
and regions and is scalable to larger power levels.

C. Input Data and Assumptions

Input data for an optimization case study was sourced from
measured data across the state of Kentucky and used assump-
tions for generator operation in-line with actual utilization.
Minute resolution load data was measured across the service
area of the Louisville Gas and Electric and Kentucky Utilities,
part of the PPL Corporation family of companies.

Bounds on operational flexibility are derived from real gen-
erator characteristics. Natural gas combustion turbine (NGCT)
generation, for example, has regulatory limits on maximum
capacity due to it’s large emissions output. Coal generation, the
slowest to ramp up and with low turn-down flexibility, is used
as a base-load with a minimum power output near 40% of rated
capacity due to it’s long starting/stopping time. Coal maximum
capacity varies each day depending on coal generation used
to meet load within the year 2021. When the maximum
capacity changes between days, so does the minimum base
load generation. Natural gas generation comprises two types:
combined cycle (NGCC) and combustion turbine. The ramp
rate, heat rate coefficients, fuel cost, consumables cost for
emissions reduction, and maintenance cost for fuel generation
types are summarized in Table I.

Capacity factor of solar PV and wind turbine power output
is defined as the ratio of current output to maximum capacity
and was derived from measured data and expected device
paramters. Solar irradiance and wind characteristics, which
were employed to create an aggregated capacity factor, were
collected from the MesoNet, a network of 60 weather stations
distributed throughout Kentucky [38]. Wind turbine capacity
factor was derived from wind speed assuming a cut-in speed
of 2.5 m/s, a nameplate wind speed of 13 m/s, and a cut-out
wind speed of 30 m/s.

The solar PV capacity factor corresponds to one of the best
case generation scenarios with relatively predictable power
output through the day and low cloud cover as shown in Fig.
2(a). The wind capacity factor, while suffering from relatively
large variability, complements daily solar cycle generation and
seasonal power output reduction with generation during the
night and across the colder months, as illustrated in Fig. 2(b).
As an illustration of the solar and wind resources, average
capacity factors per week are plotted in Fig. 3 together with
temperature measurements sourced from data collected at the
E.W. Brown solar farm owned by LG&E and KU [39]. The
combination of temperature and capacity factors indicate a
strong potential for synergistic renewable deployment with
wind peaking in the colder months and solar peaking in the
warmer months.

For each predefined mixture of firm generation types, 44
sub-cases of varying renewable penetration were simulated
with a 2:1 ratio of solar power to wind power generation.
Factors not included in the modeling were transmission losses,
interconnection costs for improvement, stability analysis, and
transmission line limitations. Trading or transfer between
external regions is not considered and all energy is generated
and consumed within the region. The maximization of VRE
utilization was prioritized and sufficient land surface (acreage)
was assumed to be available for renewable deployment. Ad-
ditionally, all generation was assumed to be available for
commitment across the year with no downtime or maintenance
required.

IV. MINUTELY ECONOMIC DISPATCH CASE STUDIES

A. Pathways to Decarbonization Scenarios

Eight scenarios were proposed and studied to better under-
stand the impact of thermal generation operational constraints
with gradually integrated VRE generation. Four of these
scenarios were optimized using economic dispatch while the
remaining four were derived for cost and emissions analysis.
Within each scenario, firm capacity portfolios were defined
such that their combined capacity would meet the current
generation capability within the LG&E and KU service area.

The four simulated scenarios are meant to capture the
influence of gradual integration of solar and wind resources



DECARBONIZATION ANALYSIS WITH KENTUCKY CASE STUDY 7

(a) CS (b) NGS

(c) CSW (d) NGSW

Fig. 5: Full year minutely simulation of optimal power dispatch for 4 decarbonization scenarios. Compared to natural gas at the same solar PV ratings,
coal-dominant cases suffer from a significant under-utilization of available VRE generation.

and firm generation flexibility: CS , the current energy port-
folio with solar; CSW , the current portfolio with solar and
wind; NGS , replacing all coal with natural gas and solar;
and NGSW , natural gas-dominant generation with solar and
wind. The additionally derived scenarios include the current
generation portfolio, C; the current portfolio converted to
all natural gas, NG; the introduction of carbon capture and
sequestration, CCSSW ; and the introduction of hydrogen fuel
cells, HSW .

Gradual renewable adoption was simulated within each
scenario by varying the rated capacity for solar PV from 0
to 20GW and for wind turbines from 0 to 10GW. In order to
assess the VRE penetration impacts and effective economics,
the maximum capacity of solar PV and wind was sized to
supply two times the maximum demand. For the example
land-locked region of Kentucky, hydropower is limited in
availability to a maximum 143 MW. The generation portfolios
studied for each scenario are summarized in Table II.

B. Simulation Results

Economic dispatch results with increasing penetration var-
ied significantly depending on the season and mixture of firm
thermal generation. For coal-dominant cases, it was found that
renewable integration is limited due to low ramp rates and turn
down capability of the coal generation. Natural gas dominant
generation benefits from more agile ramp rates and turn down
capabilities, allowing larger renewable capacity integration. In
the full year results for the four simulated cases shown in Fig.
5 the coal-dominant cases (a) and (c) have to curtail renewable
generation significantly as compared to natural-gas dominant
cases (b) and (d).

Two weeks are exemplified from case Csw in Figs. 6(a)
and 6(b), one with the highest combined average renewable
capacity factor from May 8 through 14th and one with the
lowest from January 8 to 14th, respectively. It is visualized
that when significant overgeneration occurs it can not be used
to meet demand due to the inflexiblity of baseload operation
from coal. Additionally, the limited flexibility of generation
leads to large utilization of NGCT in the low capacity week
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(a) (b)

Fig. 6: Example weeks of economic dispatch with a coal-dominated scenario for (a) a high renewable capacity factor week from May 8-14 and (b) low
renewable capacity factor week from January 8-14. Renewable output may need to be significantly curtailed compared to natural-gas dominant generation due
to slow turn-down and start-up times specific to coal operation as a base load.

(a) (b)

Fig. 7: Example weeks of economic dispatch with a natural gas-dominated scenario for (a) a high renewable capacity factor week from May 8-14 and (b)
low renewable capacity factor week from January 8-14. Utilization of natural gas-dominant generation allows for greater renewable potential due to faster
ramping rates.

in Fig. 6(b) to close the gap, costing more to operate and in
CO2 emissions.

Natural gas-dominated firm dispatch mixtures from the
NGsw case are shown in Fig. 7 with significantly increased
VRE utilization in 7(a) and sufficient NGCC capacity and
ramping capabilities to close gaps without requiring NGCT
in Fig. 7(b). The transition from coal to natural gas dominant
generation enables greater potential to decarbonize with the
gradual integration of VRE resources, while greatly decreasing
thermal generation emissions.

Solar and wind resources are expected to complement one
another because solar PV generation outputs during the day
and wind generation yielding considerable output during the
night. Seasonal variation also drastically changes output with
maximal solar capacity factor in the summer, while wind
capacity factor is improved in the cooler months (see also Fig.

3). The combination of solar and wind resources allows for
more renewable penetration than either solar and wind alone
due to their time shifted generation periods.

V. RESULTS AND DISCUSSION

A. Technical Feasibility

In order to ensure both the technical and the economic
feasibility, the resource adequacy for the four scenarios of
mixed firm generation with increasing VRE was studied for
imbalances represented by the difference between load demand
and generation. Limits for minute averaged generation power
deficits with an interconnection-dependent tolerance may be
defined by regulators [12], [40], or have been proposed in the
scientific literature, e.g. [41], [42]. The levels of long-term
imbalance considered in the following case study are larger
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Fig. 8: Annual overgeneration for four generation portfolios plotted together
with two example imbalance levels at 0.1 and 1 TWh, respectively.

than .1 GW, or 1.5% of the maximum expected load, and are
lasting longer than 15 consecutive minutes.

Under optimal dispatch, none of the four scenarios suffer
from long term undergeneration even at high VRE penetration
indicating resource adequacy for all four scenarios with the
accompanying thermal generation. For the case studies, energy
storage or peaking reserves rated at 100MW, 25MWh can
handle short-term imbalances with no limitations on the ramp-
ing rate. Solar resource output benefits of lower variability
resulting from widely spatially distributed generation. The
introduction of wind resources may increase short-term under-
generation due to large minute-to-minute variability relative to
the thermal generation ramping capability.

Of the four optimized scenarios, there are two major groups,
coal-dominant cases with a baseload and small ramping rate,
colored in grey, and natural gas-dominant cases with two
variant generation types of slower and faster ramping rates,
colored in beige. Total annual overgeneration is depicted in
Fig. 8 with four distinct trends correlated to the dominant ther-
mal generation type and the combination of solar and wind.
Renewable penetration, used throughout for the differentiation
between subcases, is defined as the ratio of annual renewable
energy generation to annual energy generation throughout the
year.

Within all four thermal generation mixtures, a limit level
may be considered for integrated VRE capacity related to
significant annual overgeneration. At low values of overgener-
ation, under two example levels of 0.1 and 1 TWh respectively,
natural gas-dominant cases can effectively use approximately
double the amount of renewables without significant cur-
tailment compared to coal-dominant generation. This effect
benefits of the increased operational flexibility of natural gas
generation including ramp rate and turn down capabilities.
Overall, the integration of both solar PV and wind generation
allows for increased effectiveness due to distributed temporal
generation and seasonal capacity factor variation with wind
being better in the winter and night and solar PV being best
during summer days.

B. Effective Renewable Integration

To analyze the impact of VRE introduction on CO2 emis-
sions over time, carbon intensity can be approximated as the
product of thermal generation per minute and the median of
the published total life cycle emissions factor per generation
technology recently published by NREL [43]. Example results
for coal and natural gas dominant generation are shown in Fig.
9(a) and (b) respectively with Ren. CF as the normalized out-
put of renewable generation relative to maximum capacity. The
expected outcome for a theoretical optimization with carbon
intensity as a third objective is reflected in Fig. 9(b) as natural
gas is scheduled to match demand with half of the carbon
emissions of coal. The switch from coal-dominant generation
to natural gas-dominant generation halves the expected annual
CO2 emissions as it will be later discussed with respect to Fig.
15.

Quick and large spikes in carbon intensity, shown in Fig.
9, occur to compensate for variability and periods of low
VRE output in both scenarios correlating with periods of
fast ramping. Distributed solar generation with low minute to
minute variability ultimately leads to greatly reduced spikes
in the intensity of CO2 emissions when compared to more
rapidly varying wind power output. Due to the short nature
of the large ramping spikes, short-term energy storage may
be used to mitigate significant portions of carbon output to
compensate for large variability. The heatmaps from Fig. 10
illustrate that the majority of the overgeneration within the
studied cases occurs during the daytime hours revealing a
potential for shifting the generated energy in time through
demand response or storage.

Overgeneration due to high renewables penetration dimin-
ishes the benefits of increased renewable energy, as curtail-
ment, trading, or energy storage may be needed to shift excess
generation or demand in time. A renewable capacity factor
was calculated considering overgeneration from the output of
the economic dispatch to quantify deterioration in renewable
economics with curtailment:

CF =
Es + Ew − Eo

8760 · (Cs + Cw)
, (9)

where an Es and Ew are the annual solar and wind energy
generation, respectively, and Eo is the annual energy overgen-
eration, over the 8,760 hours of the year and Pms and Pmw

are the maximum solar and wind power capacity, respectively.
The results for the four scenarios plotted in Fig. 11 show a
decline in renewable generation effectiveness with increased
penetration and curtailment. Renewable capacity factor for
coal-dominant cases diminishes after 17-20% while potential
for natural gas-dominant cases decreases after 30-35% due to
their faster turn up and turn down rates.

Increased renewable penetration studies revealed constraints
towards maximizing renewable economics. The effect of im-
proved operational flexibility of natural gas over coal is
reflected in Fig. 8 as more renewable energy can be effectively
hosted and integrated into the system. Once a level is reached
in VRE penetration, additional capacity fails to contribute
to covering demand and limited contributions to emissions
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(a) (b)

Fig. 9: Example week of economic dispatch carbon intensity for a high renewable capacity factor weeks with (a) coal-dominant support and (b) natural
gas-dominant support, respectively. Large spikes in carbon intensity occur in response to renewable power fluctuation. Quick spikes appear to peak and meet
demand which can be compensated for with short term energy storage or demand response.

Fig. 10: Positive imbalance magnitude and frequency increase with installed renewable energy capacity as overgeneration does not cover unfulfilled demand.
Shifting energy in time to meet temporal mismatch between renewable output and demand increases utilization potential.

Fig. 11: Capacity factor for the studied cases, including possible curtailment
at higher renewable penetration.

reduction may result from VRE output in low capacity periods.
Shifting energy demand and/or overgeneration in time and/or
the deployment of low-carbon firm generation is beneficial to
allow for increased utilization of VRE generation.

C. Uncertainty, Peaking Reserves, and Energy Storage

Previous studies by other authors have discussed the effect
on unit commitment of uncertainties, due to, for example,

variability in operational downtime, expected load, and renew-
able energy output [26], [44]. The application of our minute-
to-minute proposed method, which is tightly optimized for
expected weather data able to capture the inherent variability
of wind and solar PV output, would benefit, in principle, of
advanced and precise forecasting [34]. Furthermore, in order
to assess the capability of peaking reserves and energy storage
to compensate for weather-related uncertainty, stochastic eval-
uation was undertaken. The results of a theoretical comparative
weekly example study between the optimal dispatch for a
natural gas dominated case to the same dispatch with a 15%
largely reduced renewable energy output is presented in Figs.
12(a) and 12(b), respectively.

Minute-based chronological imbalance analysis enables an
additional step to systematically size energy storage, such as
the battery employed in this theoretical example, to resolve
the uncertainty-caused deficit. A proposed post-processing
procedure considering energy and power capacities, round trip
efficiencies, and self-discharge rates is presented in Fig. 13.
The power and energy capacity for the battery was iteratively
selected based on undergeneration and overgeneration.

The theoretical example has been purposely selected to
illustrate visible differences in Fig. 12 and numerically show
how chronological minutely simulation can track relatively
small power deficits that can accumulate over time, requiring
significantly large energy storage capacity and/or fast-ramping
firm generation. The example natural gas dominated case
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(a) (b)

Fig. 12: Example week of economic dispatch for in the critical month of January for a gas dominated system with for 6.5GW solar PV and 3.25GW wind
capacity with (a) dispatch with pre-defined weather data and (b) reduction of VRE output by 15% post-dispatch and battery energy storage for matching load
demand.

Fig. 13: Proposed procedure for sizing of the energy deficit and potential
solutions for a specified generation portfolio. Minute to minute variation
largely defines reliability for systems with high renewable energy penetration
and can be accounted for using a broad spectrum of technologies to shift
energy when needed.

in the critical month of January has 6.5GW solar PV and
3.25GW wind capacity. For a reduction of renewable power
output by 15% through the week, energy storage is sized to
.5GW and 9GWh to compensate for shortfalls in generation.
The very large battery capacity required in this extreme case
also highlights the benefit of alternatively employing peaking
reserves, such as NGCT generation.

Increased renewable generation integration may expose the
power system to sharp changes due to weather variability,
necessitating quickly ramping resources and/or energy storage.
Time variation of available battery SOC for two case studies of
a natural gas dominant scenario is plotted in Fig. 14. The dips
in the available SOC correspond to discharging to compensate
imbalances on a minute basis. It should be noted that there
are only very few and short periods without imbalances, such
as those circled in blue in the month of March. There are
also sharp drops in renewable power output leading to the
very low SOC occurrences circled in green during summer

and fall, respectively.
The rising deployment of electric vehicles (EV) opens up

additional opportunities for distributed energy storage with
managed control for charging and V2G capability [45], [46].
In principle, the EV batteries have great potential for storing
renewable overgeneration during the day and for supplying
the grid during evening and night. Additionally, mixtures
of diverse energy storage systems including hydrogen, and
centralized storage may prove greatly beneficial towards meet-
ing the energy deficit due to different operational timescales,
efficiencies, and costs [19], [22], [47].

D. Cost to Build per Portfolio

Economic feasibility per scenario was quantified by approx-
imating the cost to build additional generation to the current
LG&E and KU generation portfolio, which is specified in
Table II as C, using year 2025 capital expenditure (CAPEX)
construction costs and approximating the emissions reduction
using the annual production per generation type similarly to
previously published studies [8], [15], [25]. Table III sum-
marizes the CAPEX construction costs from the 2021 NREL
ATB [8]. Per portfolio, the cost to build was estimated as the
product of rated generation capacity and that type’s CAPEX
cost per kW. Emissions rates per generation type were also
used as measured from LG&E and KU’s generation plants
with hydrogen fuel cost to build and emissions approximated
based on ongoing research. Renewable energy generation was
assumed to be CO2 emission-less.

Eight scenarios were extrapolated from the four optimized
cases described prior, assuming the same ramping rate and
capacity for different technologies. The resulting CAPEX
cost to build and emissions reduction relative to the current
Kentucky generation portfolio, C or the large dot, is plotted
in Fig. 15. From 0 to 35% emissions reduction, there are
many low-cost renewable options that are currently actionable.
Coal-fired electricity generation is not only the most carbon-
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(a) (b)

Fig. 14: Battery energy storage sized to solve minutely imbalances with plotted available SOC across the year for natural gas dominant generation with (a)
20GW of solar PV capacity, 10GW of wind capacity, rated power of 4.6GW and energy capacity of .41 GWh and (b) 6.5GW solar, 3.25GW wind, 2.5GW
power, and .112GWh energy capacity. Dominant renewable generation significantly shifts the expected maximum peaking power to meet quick drops in VRE
output and BESS energy capacity is nonlinearly related to renewable capacity.

Fig. 15: CO2 emissions reduction vs. capital expenditure (CAPEX) cost to
build relative to the current generation portfolio. Transition from coal dom-
inant to NG dominant generation could reduce emissions by half. Solar and
wind co-integration allows for increased VRE penetration as their generation
timing is displaced from one another.

intensive generation technology, but also one of the least able
to integrate intermittent renewables with diminishing returns
for emissions reductions. For the existing portfolio, solar PV
can be effectively integrated up to approximately 20% and
furthermore, the combination of wind and solar allows for
additional emissions reduction.

Transitioning from coal to natural gas generation results in a
50% reduction in emissions without renewable integration, as
shown by the NG, the diamond, in Fig. 15. The reduction of
CO2 emissions with increased renewable penetration stagnates
without firm generation with faster ramping rates or shifting
in time to meet unfulfilled demand, in line with expectations
based on findings published by other authors, e.g. [22].

E. Levelized Cost of Energy per Generation Portfolio

A method is proposed to describe the Levelized Cost of
Energy (LCOE) of generation portfolios consisting of multiple
generation types. Additional LCOE was calculated starting
from the current generation portfolio to compare the lifetime
cost of electricity generation per subcase over a 30 year period.
The LCOE per generation source was derived from methods
published in the NREL’s 2021 Annual Technology Baseline
(ATB) [8] and adapted from the formulation described in [48]
to summarize the portfolio cost by combining all generation
technologies.

Combining LCOEs per generation type, the following re-
lationship was used to approximate the combined LCOE
($/MWh) per portfolio:

LCOE =

∑7
i=1 FCRi ∗ CAPEXi + FOMi

ED
∗ EGi

ED
+

7∑
i=1

(V OMi + FCi) ∗
EGi

ED
,

(10)

where i is the generation type, including fossil-based and
renewables; FCR the fixed charge rate or amount of revenue
per dollar of investment collected annually to pay for the initial
investment; FOM the annual fixed operation and maintenance
cost; ED the total energy demand for the year of 2019; EG is
the energy used from that generation type; V OM the variable
operation and maintenance cost per MWh; and FC the fuel
cost per MWh.

Technology-specific parameters, including FCR, FOM,
VOM, CAPEX, and FC, were extracted from the NREL 2021
ATB based on 2019 data prior to Covid-19 related disruption.
All fixed charge rates and operation and maintenance costs
were assumed to follow conservative technology innovation
with classes associated with the type of generation in Kentucky
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TABLE III: Table of CAPEX construction cost and CO2 emissions rates per generation type

Coal NGCC NG-CCS NGCT Hydrogen Solar Wind
CAPEX Cost to Build ($ per kW) 3,055 883 2,304 1,025 2,700 1,121 1,135
CO2 Emissions (lbs. per kWh) 2,000 800 80 1,200 80 N/A N/A

specifically solar-utility PV class 7, land-based wind class
4, and hydropower NPD5 classifications. Hydrogen fuel is
assumed to be readily available and equivalent to NGCC
operation. The 30 year lifetime demand is directly copied from
the sample year of minutely load. For each generation type,
a ratio was implemented to LCOE per generation type to the
total energy demand over the year, approximating LCOE if
generation capacity was perfectly sized to annual utilization.

Trends in the cost and emissions resulting from renewable
energy integration in the example study vary greatly depending
on the dominant fossil fuel used for generation as shown in
Fig. 16. The addition of solar PV and wind resources to coal-
dominant generation results in an additional LCOE near zero
as the cost of installing more renewable resources negates the
operational costs of thermal generation up to a limit. After this
limit, which is approximately 20% for solar PV and higher
for solar and wind combined, increases to generation capacity
require significant capital investment.

In the case study, natural gas and low carbon thermal gener-
ation dominant scenarios require significant capital investment
for capacity development with an initial peak in LCOE. Higher
renewable generation results in emission reduction and offsets
operational costs and the need for some thermal generation
capacity, resulting in a lower cost. As renewable generation
increases, there is a limit for this trend, around 70% with solar
and 80% with combined solar and wind.

Towards the development of low-carbon firm generation,
carbon capture and sequestration, as well as green hydrogen
generation and storage, are emerging technologies to maintain
control of generation timing while greatly reducing emissions.
Carbon capture and sequestration technologies (CCS) capture
and restrict carbon emissions from generation plants, resulting
in greatly reduced emissions for firm capability. Hydrogen
energy storage and thermal generation is another alternative,
allowing for green electrolysis or hydrogen fuel cell production
using overgeneration and thermal generation when necessary
to fill in the gapNew combustion turbine and combined cycle
capacity may be further developed and integrated with hydro-
gen and carbon-capture to additionally reduce – or completely
eliminate – carbon dioxide emissions.

F. Regional Case Study Specific Conclusions
The results of the case study indicate that moderate amounts

of regionally dispersed solar PV generation, up to approx-
imately 20%, could be integrated into the current portfolio
at low costs without significant imbalances. Additional re-
newables up to 25% may be integrated without increases to
additional LCOE if a balance of solar and wind generation
is used due to their temporally shifted generation. At high
renewable penetration, the benefit of additional renewable
generation decreases as more generation has to be curtailed
due to over-generation and the inability to shift generated
energy to timely coordinate with load demand.

Fig. 16: Lifetime CO2 emissions reduction from current Kentucky generation
vs. LCOE of generation portfolio construction and operation for a 30 year pe-
riod. The introduction of VRE reduced emissions and the LCOE non-linearly
increased with higher renewables penetration. Operation, maintenance, and
fuel costs lead to an increased gap in cost between coal, natural gas, and
low-carbon dominant cases.

Deep decarbonization and renewable integration, from 20
to 80%, can be achieved with the replacement of older coal-
fired units, which are unable to effectively adjust output for
variable generating resources, with new natural gas genera-
tion. Transitioning from coal to natural gas generation also
results in a substantial reduction in emissions, with more than
50% reduction possible even without renewable integration.
Furthermore, replacing coal with natural gas generation also
enables the effective integration of double the renewable gen-
eration when comparing overgeneration because of increased
operational flexibility. Firm generation is currently necessary
to maintain system reliability, and the integration of resources
with greater flexibility can allow more immediate and effective
investment in renewable energy generation.

Complete decarbonization between 80 and 100% necessi-
tates the implementation of higher cost, emerging technolo-
gies, such as large-scale energy storage, potentially from EVs
in V2G operation, large-scale demand response and electric
power distribution virtual power plants, advanced nuclear,
carbon capture, or renewable green hydrogen sources. New
natural gas combustion turbine and combined cycle capacity
can be built using current state of the art technology and inte-
grated with hydrogen and carbon-capture to further reduce —
or completely eliminate — carbon dioxide emissions. Current
R&D is focused on improving the performance and efficiency
and lowering implementation costs for such technologies.

VI. CONCLUSION

The method proposed for optimized economic dispatch
employs a minute-based approach that is able to consider
the fast changes specific to variable renewable energy (VRE)
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generation and required measures in order to ensure the
balanced operation of the electric power system. The method
has been implemented with differential evolution algorithms
and demonstrated through year-long simulations with detailed
minutely resolution data for weather, load, and operational
constraints, resulting in large-scale computational problems
that have been paralleled and solved on high – performance
computing (HPC) systems.

The generally applicable procedures have been applied for
a regional case study in Kentucky, USA with eight differ-
ent scenarios with varying mixtures of firm and renewable
generation capacity, which provided examples for evaluating
feasibility, estimating the overgeneration and the effectiveness
of VRE integration, cost to build and LCOE per portfolio,
carbon emissions reductions, and for establishing trends. The
simulation results show that electricity generation with faster
ramping natural gas, rather than coal, power plants is ad-
vantageous in providing operational flexibility and supporting
larger scale integration of renewables. The proposed minute-
based methods are also suitable for sizing energy storage
systems, which can further support the very large penetration
of renewable energy generation.
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