The electrical engineering degree program seeks to produce graduates who are trained in the theory and practice of electrical and computer engineering and are well prepared to handle the professional and leadership challenges of their careers. The program allows students to specialize in high performance and embedded computing, microelectronics and nanotechnology, power and energy, signal processing and communications, high frequency circuits and fields, and control systems, among others.

Admission to the degree program is selective. Students should refer to the UK Bulletin for general information concerning admission and graduation requirements.

Degree Requirements

The following curriculum meets the requirements for a B.S. in Electrical Engineering, provided the student satisfies UK Core requirements and graduation requirements of the College of Engineering.

Freshman Year

First Semester
- EGR 101 Engineering Exploration I \(\Delta\) \& \(\Delta\) ... 1
- EGR 102 Fundamentals of Engineering Computing ... 2
- Gen Univ Phy or CHE 105 Gen Col Chem I ● ... 4
- PHY 241 General University Physics Laboratory ‡.. 1
- CIS/WRD 110 Composition and Communication I ... 3
- MA 113 Calculus I ... 4

Second Semester
- EGR 103 Engineering Exploration II \(\Delta\) ... 2
- CIS/WRD 111 Composition and Communication II ... 3
- MA 114 Calculus II ... 4
- CHE 105 Gen Col Chem I or Gen Univ Phy ● .. 4
- UK Core (Social Sciences) or CS 215 Introduction to Program Design, Abstraction, and Problem Solving ... 3/4

Sophomore Year

First Semester
- MA 213 Calculus III .. 4
- General University Physics .. 4
- PHY 242 General University Physics Laboratory .. 1
- EE 211 Circuits I ... 4
- EE/CPE 282 Digital Logic Design .. 4

Second Semester
- MA 214 Calculus IV .. 3
- EE 223 AC Circuits ... 4
- EE/CPE 287 Intro to Embedded Systems .. 4
- CS 215 Introduction to Program Design, Abstraction, and Problem Solving or UK Core (Social Sciences) .. 4/3
- UK Core (Humanities) ... 3

Junior Year

First Semester
- EE 415G Electromechanics ... 3
- EE 421G Signals and Systems ... 3
- Elective EE Laboratory \([L]\) ... 2
- EE 461G Introduction to Electronics ... 3
- MA/STA 320 Introductory Probability or STA 381 Engineering Statistics: A Conceptual Approach ... 3
- Technical Elective \([T]\) ... 3

Second Semester
- EE 468G Introduction to Engineering Electromagnetics 4
- Elective EE Laboratory \([L]\) ... 2
- Engineering/Science Elective \([E]\) ... 3
- Technical Elective \([T]\) ... 3
- UK Core (Citizenship – USA) ... 3

Senior Year

First Semester
- EE/CPE 490 ECE Capstone Design \(\Delta\) \& ** ... 3
- EE Technical Electives*** .. 3
- Technical Electives** ... 3
- Supportive Elective* ... 3
- Engineering/Science Elective \([E]\) ... 3
- UK Core (Statistical Inferential Reasoning) .. 3

Second Semester
- EE 491/CPE ECE Capstone Design II \(\Delta\) .. 3
- EE Technical Electives*** .. 3
- Technical Electives** ... 3
- Supportive Elective* ... 3
- Engineering/Science Elective \([E]\) ... 3
- UK Core (Statistical Inferential Reasoning) .. 3

Supportive elective is to be chosen from any University courses, excluding more elementary versions of required courses, such as precalculus mathematics or PHY 211.

Graduation Composition and Communication Requirement (GCCR) course.

\([M]\) Math/Statistics Elective: Any upper-division (300-level or higher) math or statistics course excluding MA 308 and MA 310 (3 credit hours total).

\([E]\) Engineering/Science Elective: Any engineering, physics, computer science, or math course at the 200-level or higher, other than an electrical engineering course and excluding MA 308, MA 310, and more elementary versions of required courses (6 credit hours total). Cooperative education credit may not be used to satisfy this requirement.

\([T]\) Technical elective may be selected from upper-division (300-level or higher) engineering, mathematics, statistics, computer science, physics, or other technically-related fields excluding MA 308, MA 310, EE 305, and more elementary versions of required courses, to be selected in consultation with the academic advisor (3 credit hours total). Cooperative education credit may not be used to satisfy this requirement.

\(\Delta\) Both classes must be taken to fulfill UK Core: Arts & Creativity requirement.

\(\&\) Transfer students who declare a major will take EGR 112 Engineering Exploration for Transfer Students in place of EGR 101.

CONTINUED
Based on advisor consult

Only if enrolled in

***EE Technical Electives (must be 500-level courses). Courses recommended as electrical engineering technical electives are listed below (each course is 3 credit hours):

EE 511 Introduction to Communication Systems
EE 512 Digital Communication Systems
EE 513 Audio Signals and Systems
EE 517 Advanced Electromechanics
EE 518 Electric Drives
EE 521 Introduction to Wireless Communications
EE 522 Antenna Design
EE 523 Microwave Circuit Design
EE 525 Numerical Methods and Electromagnetics
EE 527 Electromagnetic Compatibility
EE 531 Alternative and Renewable Energy Systems
EE 532 Smartgrid: Automation and Control of Power Systems
EE 535 Power Systems: Generation, Operation and Control
EE 536 Power System Fault Analysis and Protection
EE 537 Electric Power Systems I
EE 538 Electric Power Systems II
EE 539 Power Distribution Systems
EE 546 Electric Power System Foundations
EE 560 Semiconductor Device Design
EE 561 Electric and Magnetic Properties of Materials
EE 562 Analog Electronic Circuits
EE 564 Digital Electronic Circuits
EE 565 Circuit Design With Analog Integrated Circuits
EE 567 Introduction to Lasers and Masers
EE 568 Fiber Optics
EE 569 Electronic Packaging Systems and Manufacturing Processes
EE 571 Feedback Control Design
EE 572 Digital Control of Dynamic Systems
EE 581 Advanced Logical Design
EE 582 Hardware Description Languages and Programmable Logic
EE 584 Introduction of VLSI Testing and Design
EE 585 Fault Tolerant Computing
EE 586 Communication and Switching Networks
EE 587 Microcomputer Systems Design
EE 589 Advanced VLSI
EE 599 Topics in Electrical Engineering (Subtitle required)