Aerospace Engineering

Freshman Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>EGR 101 Engineering Exploration I § ▽</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>EGR 102 Fundamentals of Engineering Computing</td>
<td>△ CS 130..2</td>
</tr>
<tr>
<td></td>
<td>MA 113 Calculus I</td>
<td>△ MATH 117..4</td>
</tr>
<tr>
<td></td>
<td>PHYS 231 General University Physics</td>
<td>△ PHYS 205..4</td>
</tr>
<tr>
<td></td>
<td>PHYS 241 General University Physics Laboratory</td>
<td>△ PHYS 205..1</td>
</tr>
<tr>
<td>Second Semester</td>
<td>EGR 103 Engineering Exploration II § ▽</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MA 114 Calculus II</td>
<td>△ MATH 118..4</td>
</tr>
<tr>
<td></td>
<td>CIS/WRD 111 Composition and Communication II △</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHE 105 General College Chemistry I</td>
<td>△ CHEM 103..4</td>
</tr>
<tr>
<td></td>
<td>UK Core – Social Sciences</td>
<td>△</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>MA 213 Calculus III</td>
<td>△ MATH 216..4</td>
</tr>
<tr>
<td></td>
<td>PHYS 232 General University Physics</td>
<td>△ PHYS 206..4</td>
</tr>
<tr>
<td></td>
<td>EM 221 Statics</td>
<td>△</td>
</tr>
<tr>
<td></td>
<td>AER/ME 251 Introduction to Materials and Manufacturing Processes</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AER 245 Introduction to Aerospace Engineering</td>
<td>△</td>
</tr>
<tr>
<td>Second Semester</td>
<td>AER/ME 220 Engineering Thermodynamics I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EM 302 Mechanics of Deformable Solids</td>
<td>△</td>
</tr>
<tr>
<td></td>
<td>MA 214 Calculus IV</td>
<td>△ MATH301..3</td>
</tr>
<tr>
<td></td>
<td>EM 313 Dynamics</td>
<td>△</td>
</tr>
<tr>
<td></td>
<td>UK Core – Humanities</td>
<td>△</td>
</tr>
<tr>
<td></td>
<td>STA 210 Making Sense of Uncertainty: An Introduction to Statistical Reasoning</td>
<td>△</td>
</tr>
<tr>
<td></td>
<td>STA 296 Statistical Methods and Motivations</td>
<td>MATH 205</td>
</tr>
<tr>
<td></td>
<td>STA 381 Engineering Statistics – A Conceptual Approach</td>
<td>△</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>AER 411 AER Capstone Design I</td>
<td>△</td>
</tr>
<tr>
<td></td>
<td>AER 410 Aerospace Engineering Laboratory</td>
<td>△</td>
</tr>
<tr>
<td></td>
<td>AER/ME 440 Design of Control Systems</td>
<td>△</td>
</tr>
<tr>
<td></td>
<td>AER 445 Aircraft Performance</td>
<td>△</td>
</tr>
<tr>
<td></td>
<td>Technical Elective*</td>
<td>△</td>
</tr>
<tr>
<td>Second Semester</td>
<td>AER 412 AER Capstone Design II</td>
<td>△</td>
</tr>
<tr>
<td></td>
<td>Technical Elective*</td>
<td>△</td>
</tr>
<tr>
<td></td>
<td>UK Core – Citizenship</td>
<td>△</td>
</tr>
<tr>
<td></td>
<td>UK Core – Global Dynamics</td>
<td>△</td>
</tr>
<tr>
<td></td>
<td>STA 210 Making Sense of Uncertainty: An Introduction to Statistical Reasoning</td>
<td>△</td>
</tr>
<tr>
<td></td>
<td>STA 296 Statistical Methods and Motivations</td>
<td>MATH 205</td>
</tr>
<tr>
<td></td>
<td>STA 381 Engineering Statistics – A Conceptual Approach</td>
<td>△</td>
</tr>
</tbody>
</table>

*Courses required for Engineering Standing. A cumulative UK GPA of at least 2.5 and successful completion of all pre-major courses. Successful completion of the following courses with at least a 2.5 GPA: CHE 105, CIS 111/WRD 111, EGR 101, EGR 102, EGR 103 (or EGR 215 in lieu of EGR 101 and EGR 103), EM 221, MA 113, MA 114, MA 213, PHY 231, PHY 241, PHY 232, and PHY 242 and a C or better in each course. If a course is repeated, the best grade will be used for calculation of GPA in the above listed courses.

Δ Students taking ENG 101 (ENGL 101) and ENG 102 should also complete COM 181 (COMM 103), COM 252 (COMM 302), COM 281 (COMM 301), or COM 287.

§ Transfer students will take EGR 215, Introduction to the Practice of Engineering for Transfer Students, in place of EGR 101 and EGR 103.

▽ Students must complete both EGR 101 and EGR 103 to fulfill the UK Core Arts and Creativity requirement. Transfer students may satisfy the UK Core Arts and Creativity requirement by taking EGR 215.

$ Online courses do not transfer. Chemistry labs must be in person.
*Technical electives can be chosen from the following list. At least three credit hours must come from either AER/ME 501 OR AER/ME 590.

AER 380 Topics in Aerospace Engineering (Variable Topics)
AER/ME 530 Gas Dynamics
AER/ME 531 Fluid Dynamics I
AER/ME 532 Advanced Strength of Materials
AER 545 Aircraft Control and Simulation
AER/ME 548 Aerodynamics of Turbomachinery
AER/ME 563 Basic Combustion Phenomena
AER/ME 565 Scale Modeling in Engineering
AER/ME 590 Applied CFD and Numerical Heat Transfer
AER/ME 516 Systems Engineering
AER 599 Topics in Aerospace Engineering (Subtitle required)
AER 395 Independent Work in Aerospace Engineering
AER/ME 501 Mechanical Design with Finite Element Methods
AER/ME 506 Mechanics of Composite Materials
AER/ME 510 Vibro-Acoustic Design in Mechanical Systems
AER/ME 513 Mechanical Vibrations
AER/ME 514 Computational Techniques in Mechanical System Analysis
Biomedical Engineering

College of Engineering

Pathway for

Bellarmine University

Transfers : 2022-2023

Biomedical Engineering

Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 213 Calculus I*</td>
<td>MATH 117...4</td>
</tr>
<tr>
<td>PHY 231 General University Physics*</td>
<td>PHYS 205...4</td>
</tr>
<tr>
<td>PHY 241 General University Physics Laboratory*</td>
<td>PHYS 205...1</td>
</tr>
<tr>
<td>CIS/WRD 110 Composition and Communication I*Δ</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 114 Calculus II*</td>
<td>MATH 118...4</td>
</tr>
<tr>
<td>CHE 105 General College Chemistry I*</td>
<td>CHEM 103...4</td>
</tr>
<tr>
<td>CIS/WRD 111 Composition and Communication II*Δ</td>
<td>3</td>
</tr>
<tr>
<td>EGR 103 Engineering Exploratory II*Δ</td>
<td>2</td>
</tr>
<tr>
<td>BIO 148 Introductory Biology I*</td>
<td>BIOL 130...3</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 213 Calculus III</td>
<td>MATH 216...4</td>
</tr>
<tr>
<td>PHY 232 General University Physics</td>
<td>PHYS 206...4</td>
</tr>
<tr>
<td>PHY 242 General University Physics Laboratory</td>
<td>PHYS 206...1</td>
</tr>
<tr>
<td>BME 201 Introduction to Biomedical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Guided Engineering Elective I[1]</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 214 Calculus IV</td>
<td>MATH 301...3</td>
</tr>
<tr>
<td>CHE 107 General College Chemistry II</td>
<td>CHEM 104...3</td>
</tr>
<tr>
<td>PRD/BME 170 Human Anatomy for Design</td>
<td>3</td>
</tr>
<tr>
<td>PRD 272 Introduction to UX for Product Design</td>
<td>2</td>
</tr>
<tr>
<td>Guided Engineering Elective II [1]</td>
<td>3</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 435 Computer Modeling of Complex Systems</td>
<td>3</td>
</tr>
<tr>
<td>BME 436 Computer-Aided Design: Solidworks</td>
<td>2</td>
</tr>
<tr>
<td>PRD/BME 350 Materials and Processes</td>
<td>3</td>
</tr>
<tr>
<td>EGR 250 Computer-Aided Design: Solidworks</td>
<td>2</td>
</tr>
<tr>
<td>EGR 215, or COM 252 (COMM 301)</td>
<td>3</td>
</tr>
<tr>
<td>EGR 350 Engineering Elective III [1]</td>
<td>3</td>
</tr>
<tr>
<td>UK Core – Social Sciences</td>
<td>3</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 420 Senior Design Project in Biomedical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>PRD/BME 451 Integrated Entrepreneurship in Product Design</td>
<td>2</td>
</tr>
<tr>
<td>PRD/BME 350 Materials and Processes</td>
<td>3</td>
</tr>
<tr>
<td>PRD 207 Case Studies in Physiology</td>
<td>1</td>
</tr>
<tr>
<td>BME Basic Elective I [2]</td>
<td>3</td>
</tr>
<tr>
<td>BME Advanced Elective I [3]</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 421 Senior Design Project in Biomedical Engineering II ∞</td>
<td>3</td>
</tr>
<tr>
<td>BME Basic Elective III [2]</td>
<td>2</td>
</tr>
<tr>
<td>BME Basic Elective IV [2]</td>
<td>2</td>
</tr>
<tr>
<td>BME Advanced Elective II [3]</td>
<td>3</td>
</tr>
<tr>
<td>UK Core – Global Dynamics</td>
<td>3</td>
</tr>
</tbody>
</table>

*Courses are required for Engineering Standing. A cumulative UK GPA of at least 2.5 and successful completion of the following courses with at least a 2.5 GPA: BIO 148, BIO 152, BME 201, CHE 105, CIS 110 / WRD 110, CIS 111 / WRD 111, EGR 101, EGR 102, EGR 103, MA 113, MA 114, MA 213, PHY 231, PHY 241, PHY 232 and PHY 242. If the course is repeated, the best grade will be used for calculation of GPA in the above listed courses.

Δ Students taking ENG 101 (ENGL 101) and ENG 102 should also complete COM 181 (COMM 103), COM 252 (COMM 302), COM 281 (COMM 301), or COM 287.

§ Transfer students will take EGR 215, Introduction to the Practice of Engineering for Transfer Students, in place of EGR 101 and EGR 103.

∇ Students must complete both EGR 101 and EGR 103 to fulfill the UK Core Arts and Creativity requirement. Transfer students may satisfy the UK Core Arts and Creativity requirement by taking EGR 215.

∞ Graduation Composition and Communication Requirement (GCCR) course.

$ Online courses do not transfer. Chemistry labs must be in person.
Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 101 Engineering Exploration I §†</td>
<td>1</td>
</tr>
<tr>
<td>EGR 102 Fundamentals of Engineering Computing</td>
<td>C.S 130 ..2</td>
</tr>
<tr>
<td>CHE 105 General College Chemistry I*</td>
<td>CHEM 103 ..4</td>
</tr>
<tr>
<td>CIS/WRD 110 Composition and Communication I*∆</td>
<td>3</td>
</tr>
<tr>
<td>MA 113 Calculus I*</td>
<td>MATH117 ..4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 103 Engineering Exploration II §†</td>
<td>2</td>
</tr>
<tr>
<td>MA 114 Calculus II*</td>
<td></td>
</tr>
<tr>
<td>CIS/WRD 111 Composition and Communication II ∆</td>
<td>3</td>
</tr>
<tr>
<td>PHY 231 General University Physics*</td>
<td>PHYS 205 ..4</td>
</tr>
<tr>
<td>PHY 241 General University Physics Laboratory</td>
<td>PHYS 205 ..1</td>
</tr>
<tr>
<td>UK Core</td>
<td></td>
</tr>
</tbody>
</table>

Sophomore Year

First Semester	
BAE 200 Principles of Biosystems Engineering*	3
BIO 148 Introductory Biology I	
MA 213 Calculus III*	MATH 216 ..4
PHY 232 General University Physics*	PHYS 206 ..4
PHY 242 General University Physics Laboratory	PHYS 206 ..1
CE 106 Computer Graphics and Communication	

Second Semester	
BAE 202 Statistical Inferences for Biosystems Engineering	3
MA 214 Calculus IV	MATH 301 ..3
ME 220 Engineering Thermodynamics I	
EM 221 Statics	
CHE 107 General College Chemistry II	CHEM 104 ..3

Junior Year

First Semester	
BAE 301 Economic Analysis for Biosystems	2
ME 330 Fluid Mechanics	
EE 305 Electrical Circuits and Electronics	
EM 313 Dynamics	
BIO 152 Principles of Biology II	
WRD 204 Technical Writing	

Second Semester	
BAE 305 DC Circuits and Microelectronics	3
EM 302 Mechanics of Deformable Solids	
BAE 310 Heat and Mass Transfer in Biosystems Engineering	3
Biosystems Core Elective**	3
UK Core	

Senior Year

First Semester	
BAE 402 Biosystems Engineering Design I	2
BAE 400 Senior Seminar	1
Biosystems Core** or Technical Elective***	3
Biosystems Core** or Technical Elective***	3
Biological Science Elective	

Second Semester	
BAE 403 Biosystems Engineering Design II	2
BAE 502 Modeling of Biological Systems	
Biosystems Core** or Technical Elective***	3
Biosystems Core** or Technical Elective***	3
UK Core	3

*Courses are required for Engineering Standing. A cumulative UK GPA of at least 2.5 and successful completion of all pre-major courses. Successful completion of the following courses with at least a 2.5 GPA: CHE 105, CIS 110/WRD 110, MA 113, MA 114, MA 213, and PHY 231. Completion of BAE 200 with a grade of C or better. If a course is repeated, the best grade will be used for calculation of GPA in the above listed courses.

∆ Students taking ENG 101 (ENGL 101) and ENG 102 should also complete COM 181 (COMM 103), COM 252 (COMM 302), COM 281 (COMM 301), or COM 287.

§ Transfer students will take EGR 215, Introduction to the Practice of Engineering for Transfer Students, in place of EGR 101 and EGR 103.

† Students must complete both EGR 101 and EGR 103 to fulfill the UK Core Arts and Creativity requirement. Transfer students may satisfy the UK Core Arts and Creativity requirement by taking EGR 215.

** A minimum of 9 hours are required from the biosystems engineering core courses: BAE 417 Design of Mechanical Systems, BAE 427 Structures and Environment Engineering, BAE 437 Land and Water Resources Engineering, and BAE 447 Bioprocess Engineering Fundamentals.

*** A minimum of 9 hours are to be taken in addition to the 9 core hours selected by the student. The technical electives allow the student an opportunity to concentrate or gain depth in one or more of the various specialty areas of biosystems engineering. The technical electives must be selected from the courses listed below and approved by the student's academic advisor. Other courses may be considered, each on its individual merit.

△ Graduation Composition and Communication Requirement (GCCCR) course.

§ Online courses do not transfer. Chemistry labs must be in person.
Chemical Engineering Pathway

University of Kentucky

Freshman Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Courses</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>CDE 110 Composition and Communication I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MA 113 Calculus I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>EGR 101 Engineering Exploration I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHE 105 General Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHE 111 General Chemistry Lab I</td>
<td>3</td>
</tr>
<tr>
<td>Second Semester</td>
<td>CIS/WRD 111 Composition and Communication II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MA 114 Calculus II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>EGR 103 Exploration II</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>PHY 231 General Physics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>UK Core – Social Sciences</td>
<td>3</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Courses</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>CME 200 Process Principles</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MA 213 Calculus III</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CHE 107 General Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHE 113 General Chemistry II Laboratory*</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MSE 201 Materials Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>UK Core – Humanities</td>
<td>3</td>
</tr>
<tr>
<td>Second Semester</td>
<td>CME 220 Computational Tools in Chemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CME 320 Engineering Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MA 214 Calculus IV</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHY 232 General Physics</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>STA 381 Engineering Statistics – A Conceptual Approach</td>
<td>3</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Courses</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>CME 330 Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CME 415 Separation Processes</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHE 230 Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CHE 231 Organic Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CHE 446G Physical Chemistry for Engineers</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>WRD 204 Technical Writing</td>
<td>3</td>
</tr>
<tr>
<td>Second Semester</td>
<td>CME 006 The Engineering Profession (Junior and Senior)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CME 420 Process Modeling in Chemical Engineering</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CME 425 Heat and Mass Transfer</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CME 432 Chemical Engineering Laboratory I</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CHE 232 Organic Chemistry II</td>
<td>3</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Courses</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>CME 006 The Engineering Profession (Junior and Senior)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CME 433 Chemical Engineering Laboratory II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CME 455 Chemical Engineering Process Design I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CME 470 Professionalism, Ethics and Safety</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CME 550 Chemical Reactor Design</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>UK Core – Citizenship - USA</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Engineering/Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>Second Semester</td>
<td>CME 006 The Engineering Profession (Junior and Senior)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CME 456 Chemical Engineering Process Design II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CME 462 Process Control</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>UK Core – Global Dynamics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Engineering/Science Elective</td>
<td>3</td>
</tr>
</tbody>
</table>

*Courses are required for Engineering Standing. A cumulative UK GPA of at least 2.5 and successful completion of all pre-major courses. Successful completion of the following courses with at least a 2.5 GPA: CHE 105, CHE 107, CHE 111, CHE 113, CIS 110/WRD 110, MA 113, MA 114, MA 213, and PHY 231. Completion of CME 200 with a grade of C or better. If a course is repeated, the best grade will be used for calculation of GPA in the above listed courses.

Δ Students taking ENG 101 (ENGL 101) and ENG 102 should also complete COM 181 (COMM 103), COM 232 (COMM 302), COM 281 (COMM 301), or COM 287.

§ Transfer students will take EGR 215, Introduction to the Practice of Engineering for Transfer Students, in place of EGR 101 and EGR 103.

† Students must complete both EGR 101 and EGR 103 to fulfill the UK Core Arts and Creativity requirement. Transfer students may satisfy the UK Core Arts and Creativity requirement by taking EGR 215.

∞ Graduation Composition and Communication Requirement (GCCR) course.

[1] Engineering/Science Elective Structure. Students must select four courses as follows:

2. Science/math elective (totaling three or more credit hours) that is not a more elementary version of a required course. [Students may combine multiple qualifying courses that total 3 credits (e.g. pre-medical students may wish to combine PHY 241, 242 and CHE 233 - CHEM 206)]
 a. Math [MA 321 (MATH 405), 322 (MATH 215), 416G (MATH 430), 432G, 433G (MATH 411), 471G (MATH 403), 481G]
 b. Chemistry [CHE 226 (CHEM 411), 250, 510 and above]
 c. Biology [BIO 148 (BIOL 130) and above]
 d. Physics [PHY 241 (PHYS 205) and above]
 e. Other courses by approval of Director of Undergraduate Studies

3. Engineering elective (level 300 and above) that does not significantly duplicate content in a core chemical engineering course (e.g. ME 330) OR a CME Elective (CME 395 & above).

4. Chemical engineering elective (CME 395 and above) OR one engineering elective (level 300 and above) OR one science/math elective as described above.

**CME 395 (3 credits) may be used to satisfy only one elective requirement

$ Online courses do not transfer. Chemistry must be in person.

University of Kentucky is accredited by the Southern Association of Colleges and Schools Commission on Colleges to award associate, baccalaureate, masters, and doctorate degrees. Contact the Commission on Colleges at 1866 Southern Lane, Decatur, Georgia 30033-4097, call 404-679-4500, or online at www.sacsco.org for questions about the accreditation of University of Kentucky.
Civil Engineering

Freshman Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Courses</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>EGR 101 Engineering Exploration I §</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>EGR 102 Fundamentals of Engineering Computing</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CIS/WRD 110 Composition and Communication I*</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MA 113 Calculus I*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHE 105 General College Chemistry I*</td>
<td>4</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Courses</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 103 Engineering Exploration II §</td>
<td>2</td>
</tr>
<tr>
<td>CIS/WRD 111 Composition and Communication II Δ</td>
<td>3</td>
</tr>
<tr>
<td>MA 114 Calculus II*</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 231 General University Physics*</td>
<td>4</td>
</tr>
<tr>
<td>PHY 241 General University Physics Laboratory*</td>
<td>1</td>
</tr>
<tr>
<td>UK Core – Social Sciences</td>
<td></td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Courses</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 211 Surveying*</td>
<td>4</td>
</tr>
<tr>
<td>CHE 107 General College Chemistry II*</td>
<td>3</td>
</tr>
<tr>
<td>EM 221 Statics*</td>
<td>3</td>
</tr>
<tr>
<td>MA 213 Calculus III*</td>
<td>3</td>
</tr>
<tr>
<td>CE 106 Computer Graphics and Communication*</td>
<td>3</td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Courses</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRD 204 Technical Writing</td>
<td>3</td>
</tr>
<tr>
<td>EES 220 Principles of Physical Geology</td>
<td>4</td>
</tr>
<tr>
<td>CE 312 Fundamentals and Applications of Sustainable Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CE 341 Introduction to Fluid Mechanics</td>
<td>4</td>
</tr>
<tr>
<td>CE 381 Civil Engineering Materials I</td>
<td>3</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Courses</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE 401 Seminar</td>
<td>1</td>
</tr>
<tr>
<td>CE 429 Civil Engineering Systems Design</td>
<td>3</td>
</tr>
<tr>
<td>UK Core – Citizenship - US</td>
<td>3</td>
</tr>
</tbody>
</table>

Graduation Composition and Communication Requirement (GCCR) course.

- STA 296 (MATH 205) or STA 381.
- ME 220 or EM 313.
- Students must complete both EGR 101 and EGR 103 to fulfill the UK Core Arts and Creativity requirement. Transfer students may satisfy the UK Core Arts and Creativity requirement by taking EGR 215.

University of Kentucky is accredited by the Southern Association of Colleges and Schools Commission on Colleges to award associate, baccalaureate, masters, and doctorate degrees. Contact the Commission on Colleges at 1866 Southern Lane, Decatur, Georgia 30033-4097, call 404-679-4500, or online at www.sacscoc.org for questions about the accreditation of University of Kentucky.
Computer Engineering

University of Kentucky

The University of Kentucky is accredited by the Southern Association of Colleges and Schools Commission on Colleges to award associate, baccalaureate, masters, and doctorate degrees. Contact the Commission on Colleges at 1866 Southern Lane, Decatur, Georgia 30033-4097, call 404-679-4500, or online at www.sacscoc.org for questions about the accreditation of University of Kentucky.

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 101 Engineering Exploration I § †</td>
<td>1</td>
</tr>
<tr>
<td>EGR 102 Fundamentals of Engineering Computing</td>
<td>2</td>
</tr>
<tr>
<td>MA 113 Calculus I</td>
<td></td>
</tr>
<tr>
<td>CHE 105 General College Chemistry I *</td>
<td></td>
</tr>
<tr>
<td>CIS/WRD 110 Composition and Communication I *Δ</td>
<td></td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 103 Engineering Exploration II § †</td>
<td>2</td>
</tr>
<tr>
<td>MA 114 Calculus II</td>
<td></td>
</tr>
<tr>
<td>PHY 231 General University Physics*</td>
<td></td>
</tr>
<tr>
<td>PHY 241 General University Physics Laboratory</td>
<td></td>
</tr>
<tr>
<td>CPE 200 Computer Engineering Sophomore Seminar</td>
<td></td>
</tr>
<tr>
<td>CPE 282 Digital Logic Design*</td>
<td>4</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 213 Calculus III</td>
<td></td>
</tr>
<tr>
<td>PHY 232 General University Physics</td>
<td></td>
</tr>
<tr>
<td>PHY 242 General University Physics Laboratory</td>
<td></td>
</tr>
<tr>
<td>CS 216 Introduction to Software Engineering Techniques*</td>
<td></td>
</tr>
<tr>
<td>CPE 287 Introduction to Embedded Systems</td>
<td></td>
</tr>
<tr>
<td>CS 270 Systems Programming</td>
<td></td>
</tr>
<tr>
<td>CS 275 Discrete Mathematics</td>
<td></td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 223 AC Circuits</td>
<td>4</td>
</tr>
<tr>
<td>CS 315 Algorithm Design and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CPE 380 Computer Organization</td>
<td></td>
</tr>
<tr>
<td>STA 381 Engineering Statistics – A Conceptual Approach</td>
<td></td>
</tr>
<tr>
<td>UK Core – Humanities</td>
<td>3</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPE 490 ECE Capstone Design I ×</td>
<td>3</td>
</tr>
<tr>
<td>CPE Elective††</td>
<td></td>
</tr>
<tr>
<td>CPE Elective††</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective†</td>
<td></td>
</tr>
<tr>
<td>UK Core – Citizenship - USA</td>
<td>3</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPE 491 ECE Capstone Design II †</td>
<td></td>
</tr>
<tr>
<td>Hardware Elective €</td>
<td>3</td>
</tr>
<tr>
<td>Software Elective</td>
<td></td>
</tr>
<tr>
<td>CPE Elective††</td>
<td>3</td>
</tr>
<tr>
<td>UK Core – Global Dynamics</td>
<td>3</td>
</tr>
</tbody>
</table>

Course descriptions:

- **Courses are required for Engineering Standing.** A cumulative UK GPA of at least 2.5 and successful completion of all pre-major courses. Successful completion of the following courses with at least a 2.5 GPA: CHE 105, CIS 110/WRD 110, CS 215, CS 216, EE 282/CPE 282, and PHY 231. If a course is repeated, the best grade will be used for calculation of GPA in the above listed courses.

- **Δ Students taking ENG 101 (ENGL 101) and ENG 102 should also complete COM 181 (COMM 103), COM 252 (COMM 302), COM 281 (COMM 301), or COM 287.**

- **§ Transfer students will take EGR 215, Introduction to the Practice of Engineering for Transfer Students, in place of EGR 101 and EGR 103.**

- **† Students must complete both EGR 101 and EGR 103 to fulfill the UK Core Arts and Creativity requirement. Transfer students may satisfy the UK Core Arts and Creativity requirement by taking EGR 215.**

- **× Graduation Composition and Communication Requirement (GCCCR) course.**

- **†† Technical elective may be selected from upper-division engineering, mathematics, statistics, computer science, physics, or other technically-related fields excluding more elementary version of required courses. To be selected in consultation with academic advisor. If a student wishes to use CS 499 instead of CPE 490 and CPE 491 to fulfill the GCCCR and senior design requirements, the student must receive approval from the DUS to select an additional technical elective that supports the proposed CS 499 project.**

- **††† 400-level CS courses and 500-level CPE and EE courses with emphasis in the computer engineering area. To be selected in consultation with academic advisor.**

- **€ Hardware electives are senior level courses in the CPE or EE disciplines and shall be selected from the following list and/or selected in consultation with academic advisor: CS 441G Compilers for Algorithmic Languages (fall only) CS 471G Networking and Distributed Operating Systems CS 570 Modern Operating Systems CPE 588 Real-Time Computer Systems**

- **$ Online courses do not transfer. Chemistry labs must be in person.**

Transfer Students

- **Transfer Students will take EGR 215, Introduction to the Practice of Engineering for Transfer Students, in place of EGR 101 and EGR 103.**

Required Courses

- **EE 441G Compilers for Algorithmic Languages**
- **EE 461G Introduction to Electronics**
- **Technical Elective††**
- **CPE 480 Advanced Computer Architecture**
- **UK Core – Social Sciences**

Additional Information

- **Courses are required for Engineering Standing.**
- **Δ Students taking ENG 101 (ENGL 101) and ENG 102 should also complete COM 181 (COMM 103), COM 252 (COMM 302), COM 281 (COMM 301), or COM 287.**
- **§ Transfer students will take EGR 215, Introduction to the Practice of Engineering for Transfer Students, in place of EGR 101 and EGR 103.**
- **† Students must complete both EGR 101 and EGR 103 to fulfill the UK Core Arts and Creativity requirement. Transfer students may satisfy the UK Core Arts and Creativity requirement by taking EGR 215.**
- **× Graduation Composition and Communication Requirement (GCCCR) course.**
- **†† Technical elective may be selected from upper-division engineering, mathematics, statistics, computer science, physics, or other technically-related fields excluding more elementary version of required courses. To be selected in consultation with academic advisor. If a student wishes to use CS 499 instead of CPE 490 and CPE 491 to fulfill the GCCCR and senior design requirements, the student must receive approval from the DUS to select an additional technical elective that supports the proposed CS 499 project.**
- **††† 400-level CS courses and 500-level CPE and EE courses with emphasis in the computer engineering area. To be selected in consultation with academic advisor.**
- **€ Hardware electives are senior level courses in the CPE or EE disciplines and shall be selected from the following list and/or selected in consultation with academic advisor: CS 441G Compilers for Algorithmic Languages (fall only) CS 471G Networking and Distributed Operating Systems CS 570 Modern Operating Systems CPE 588 Real-Time Computer Systems**
- **$ Online courses do not transfer. Chemistry labs must be in person.**
Computer Science

College of Engineering

Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 101 Engineering Exploration I § †</td>
<td>1</td>
</tr>
<tr>
<td>EGR 102 Fundamentals of Engineering Computing</td>
<td>CS 130 2</td>
</tr>
<tr>
<td>CHE 105 General College Chemistry I (CHEM 103)</td>
<td>PHYS 205 4</td>
</tr>
<tr>
<td>or PHY 231 General University Physics</td>
<td></td>
</tr>
<tr>
<td>CIS/WRD 110 Composition and Communication I Δ</td>
<td>3</td>
</tr>
<tr>
<td>MA 113 Calculus I</td>
<td>MATH 117 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 103 Engineering Exploration II †</td>
<td>2</td>
</tr>
<tr>
<td>CIS/WRD 111 Composition and Communication II A</td>
<td></td>
</tr>
<tr>
<td>MA 114 Calculus II*</td>
<td>MATH 118 4</td>
</tr>
<tr>
<td>PHY 231 General University Physics (PHYS 205)</td>
<td></td>
</tr>
<tr>
<td>or CHE 105 General College Chemistry I*</td>
<td>CHEM 105 4</td>
</tr>
<tr>
<td>PHY 241 General University Physics Laboratory ‡</td>
<td>PHYS 205 1</td>
</tr>
<tr>
<td>CS 215 Introduction to Program Design, Abstraction, and Problem Solving Techniques*</td>
<td>4</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 216 Introduction to Software Engineering Techniques*</td>
<td>3</td>
</tr>
<tr>
<td>CS 275 Discrete Mathematics*</td>
<td>4</td>
</tr>
<tr>
<td>EE 290 Design of Logic Circuits</td>
<td>3</td>
</tr>
<tr>
<td>MA 213 Calculus III</td>
<td>MATH 216 4</td>
</tr>
<tr>
<td>UK Core – Social Sciences</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 270 Systems Programming</td>
<td>3</td>
</tr>
<tr>
<td>CS 315 Algorithm Design and Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective [T]</td>
<td>3</td>
</tr>
<tr>
<td>UK Core – Humanities</td>
<td>3</td>
</tr>
<tr>
<td>Science Elective [S]</td>
<td>3</td>
</tr>
</tbody>
</table>

*Courses required for Engineering Standing. A cumulative UK GPA of at least 2.5 and successful completion of all pre-major courses. Successful completion of the following courses with at least a 2.5 GPA: CS 215, CS 216, CS 275, and MA 114. If a course is repeated, the best grade will be used for calculation of GPA in the above listed courses.

∆ Students taking ENG 101 (ENGL 101) and ENG 102 should also complete COM 181 (COMM 103), COM 252 (COMM 302), COM 281 (COMM 301), or COM 287.

§ Transfer students will take EGR 215, Introduction to the Practice of Engineering for Transfer Students, in place of EGR 101 and EGR 103.

† Students must complete both EGR 101 and EGR 103 to fulfill the UK Core Arts and Creativity requirement. Transfer students may satisfy the UK Core Arts and Creativity requirement by taking EGR 215.

* Based on advisor consult.

‡ Only if enrolled in PHY 231.

[T] Any additional 300-level or higher classes selected from computer science, electrical engineering, mathematics [including MA 214 (MATH 301): Calculus IV and excluding MA 308: Problem Solving-Middle School and MA 310: Mathematics Problem Solving-Teachers], College of Business and Economics, or by the Department of Computer Science's approval.

[S] Science Elective (3 credit hours) - must be selected from UK core natural science list, UK core social science list, or approved by the Department of Computer Science.

[C] Computer Science Elective (18 credit hours) – include 300-level and above computer science courses with three classes to be selected from: CS 316, CS 335, CS 378, CS 405G, CS 441G, CS 450G, CS 460G and CS 463G.

[N] Natural Science (3 credit hours) – Any natural science course to be selected from the UK core natural science list or approved by the Department of Computer Science.

[E] Free Elective (10 credit hours) – can be any course that earns college credit and is not a more elementary version of a required course. 6 credits are not to be selected from computer science, mathematics, natural science and engineering.

∞ Graduation Composition and Communication Requirement (GCCR) course.

$ Online courses do not transfer. Chemistry labs must be in person.

University of Kentucky is accredited by the Southern Association of Colleges and Schools Commission on Colleges to award associate, baccalaureate, masters, and doctorate degrees. Contact the Commission on Colleges at 1866 Southern Lane, Decatur, Georgia 30033-4097, call 404-679-4500, or online at www.sacscoc.org for questions about the accreditation of University of Kentucky.
Electrical Engineering

Freshman Year

First Semester
- EGR 101 Engineering Exploration I § † .. 1
- EGR 102 Fundamentals of Engineering Computing ... C S 130...2
- PHY 231 General University Physics .. PHYS 205...4
- PHYS 241 General University Physics Laboratory .. PHYS 205...1
- CIS/WRD 110 Composition and Communication I Δ .. 3
- MA 113 Calculus I .. MA 117...4

Second Semester
- EGR 103 Engineering Exploration II § † .. 2
- CIS/WRD 111 Composition and Communication II Δ 3
- MA 114 Calculus II ... MA 118...4
- CHE 105 General College Chemistry I .. CHEM 103...4
- CS 215 Introduction to Programming, Abstraction, and Problem Solving 4

Sophomore Year

First Semester
- MA 213 Calculus III ... MATH 216...4
- PHY 232 General University Physics ... PHYS 206...4
- PHY 242 General University Physics Laboratory ... PHYS 206...1
- EE 211 Circuits I ... 4
- EE/CPE 282 Digital Logic Design .. 4

Second Semester
- MA 214 Calculus IV ... MATH 301...3
- EE 223 AC Circuits ... 4
- EE/CPE 287 Introduction to Embedded Systems .. 4
- UK Core – Social Sciences .. 3
- UK Core – Humanities .. 3

Junior Year

First Semester
- EE 415G Electromechanics ... 3
- EE 421G Signals and Systems .. 3
- Elective EE Laboratory [L] ... 2
- EE 461G Introduction to Electronics ... 3
- MA 320 Introductory Probability (MATH 314) or STA 381 Engineering Statistics – A Conceptual Approach .. 3
- Technical Elective [T] .. 3

Second Semester
- EE 468G Introduction to Engineering Electromagnetics 4
- Elective EE Laboratory [L] ... 2
- Engineering/Science Elective [E] .. 3
- Technical Elective [T] .. 3
- UK Core – Citizenship - USA ... 3

Senior Year

First Semester
- EE/CPE 491 ECE Capstone Design Iν ... 3
- EE Technical Elective** .. 3
- EE Technical Elective** .. 3
- UK Core – Global Dynamics ... 3

Second Semester
- EE/CPE 491 ECE Capstone Design II .. 3
- EE Technical Elective** .. 3
- EE Technical Elective** .. 3
- EE Technical Elective** .. 3
- UK Core – Statistical Inferential Reasoning .. 3

*Courses are required for Engineering Standing. A cumulative UK GPA of at least 2.5 and successful completion of all pre-major courses. Successful completion of the following courses with at least a 2.5 GPA: CIS 110/WRD 110, CHE 105, CS 215, EE 211, EE 282/CPE 282, and PHY 231. If a course is repeated, the best grade will be used for calculation of GPA in the above listed courses.

Δ Students taking ENG 101 (ENGL 101) and ENG 102 should also complete COM 181 (COMM 103), COM 252 (COMM 302), COM 281 (COMM 301), or COM 287.

§ Transfer students will take EGR 215, Introduction to the Practice of Engineering for Transfer Students, in place of EGR 101 and EGR 103.

† Students must complete both EGR 101 and EGR 103 to fulfill the UK Core Arts and Creativity requirement. Transfer students may satisfy the UK Core Arts and Creativity requirement by taking EGR 215.

[M] Math/Statistics Elective: Any upper-division (300-level or higher) math or statistics course excluding MA 308 and MA 310 (3 credit hours total).

[E] Engineering/Science Electives: Any engineering, physics, computer science, or math course at the 200-level or higher, other than an electrical engineering course and excluding MA 308, MA 310, and more elementary versions of required courses (6 credit hours total). Cooperative education credit may not be used to satisfy this requirement.

[T] Technical elective may be selected from upper-division (300-level or higher) engineering, mathematics, statistics, computer science, physics, or other technically-related fields excluding MA 308, MA 310, EE 305, and more elementary versions of required courses, to be selected in consultation with the academic advisor (6 credit hours total).

∞ Graduation Composition and Communication Requirement (GCCR) course.

§ Online courses do not transfer. Chemistry labs must be in person.

--- CONTINUED ---

University of Kentucky is accredited by the Southern Association of Colleges and Schools Commission on Colleges to award associate, baccalaureate, masters, and doctorate degrees. Contact the Commission on Colleges at 1866 Southern Lane, Decatur, Georgia 30033-4097, call 404-679-4500, or online at www.sacscoc.org for questions about the accreditation of University of Kentucky.
EE Technical Electives (must be 500-level courses). Courses recommended as electrical engineering technical electives are listed below (each course is 3 credit hours):

EE 503 Power Electronics
EE 511 Introduction to Communication Systems
EE 512 Digital Communication Systems
EE 513 Audio Signals and Systems
EE 517 Advanced Electromechanics
EE 518 Electric Drives
EE 522 Antenna Design
EE 523 Microwave Circuit Design
EE 525 Numerical Methods and Electromagnetics
EE 527 Electromagnetic Compatibility
EE 531 Alternative and Renewable Energy Systems
EE 532 Smart Grid: Automation and Control of Power Systems
EE 533 Advanced Power System Protection
EE 535 Power Systems: Generation, Operation and Control
EE 536 Power System Fault Analysis and Protection
EE 537 Electric Power Systems I
EE 538 Electric Power Systems II
EE 539 Power Distribution Systems
EE 543 Solar Cell Devices and Systems for Electrical Energy Generation
EE 546 Electric Power System Fundamentals
EE 560 Semiconductor Device Design
EE 566 Engineering Optics
EE 567 Introduction to Lasers and Masers
EE 568 Fiber Optics
EE 569 Electronic Packaging Systems and Manufacturing Processes
EE 571 Feedback Control Design
EE 572 Digital Control of Dynamic Systems
EE 582 Hardware Description Languages and Programmable Logic
EE 584 Introduction of VLSI Testing and Design
EE 585 Fault Tolerant Computing
EE 586 Communication and Switching Networks
EE 587 Microcomputer Systems Design
EE 588 Real-Time Computer Systems
EE 589 Advanced VLSI
EE 599 Topics in Electrical Engineering (Subtitle required)
Pathways for Bellarmine University
Transfers - 2023-2024

Materials Engineering

Freshman Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 101 Engineering Exploration I § †</td>
<td>1</td>
</tr>
<tr>
<td>EGR 102 Fundamentals of Engineering Computing</td>
<td>C S 130...2</td>
</tr>
<tr>
<td>CHE 105 General College Chemistry I*</td>
<td>CHEM 103...4</td>
</tr>
<tr>
<td>CHE 111 General Chemistry I Laboratory*§</td>
<td>CHEM 103...1</td>
</tr>
<tr>
<td>CIS/WRD 110 Composition and Communication I*Δ</td>
<td>3</td>
</tr>
<tr>
<td>MA 113 Calculus I*</td>
<td>MATH 117...4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 103 Engineering Exploration II § †</td>
<td>2</td>
</tr>
<tr>
<td>CIS/WRD 111 Composition and Communication II Δ</td>
<td>3</td>
</tr>
<tr>
<td>MA 114 Calculus II*</td>
<td>MATH 118...4</td>
</tr>
<tr>
<td>PHY 231 General University Physics*</td>
<td>PHYS 205...4</td>
</tr>
<tr>
<td>PHY 241 General University Physics Laboratory*</td>
<td>PHYS 205...1</td>
</tr>
<tr>
<td>UK Core – Social Sciences</td>
<td></td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 201 Materials Science</td>
<td>3</td>
</tr>
<tr>
<td>MSE 202 Materials Science Laboratory</td>
<td></td>
</tr>
<tr>
<td>MA 213 Calculus III*</td>
<td>MATH 216...4</td>
</tr>
<tr>
<td>CHE 117 General Chemistry II Laboratory*§</td>
<td>CHEM 104...2</td>
</tr>
<tr>
<td>EM 221 Statics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 301 Materials Science II</td>
<td>3</td>
</tr>
<tr>
<td>MSE 351 Materials Thermodynamics</td>
<td></td>
</tr>
<tr>
<td>MA 214 Calculus IV</td>
<td>MATH 301...3</td>
</tr>
<tr>
<td>PHY 232 General University Physics</td>
<td>PHYS 206...4</td>
</tr>
<tr>
<td>CHE 236 Survey of Organic Chemistry</td>
<td></td>
</tr>
</tbody>
</table>

Junior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 401G Metal and Alloys</td>
<td>3</td>
</tr>
<tr>
<td>MSE 404G Polymeric Materials</td>
<td></td>
</tr>
<tr>
<td>CME 290 Process Principles</td>
<td></td>
</tr>
<tr>
<td>EM 302 Mechanics of Deformable Solids</td>
<td></td>
</tr>
<tr>
<td>STA 381 Engineering Statistics – A Conceptual Approach</td>
<td></td>
</tr>
<tr>
<td>UK Core – Humanities</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 402G Electronic Materials and Processing</td>
<td>3</td>
</tr>
<tr>
<td>MSE 403G Ceramic Engineering and Processing</td>
<td></td>
</tr>
<tr>
<td>MSE 407 Materials Laboratory I ∞</td>
<td></td>
</tr>
<tr>
<td>MSE 535 Mechanical Properties of Materials</td>
<td></td>
</tr>
<tr>
<td>PHY 361 Principles of Modern Physics</td>
<td>PHYS 307...3</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>First Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 408 Materials Laboratory II</td>
<td>3</td>
</tr>
<tr>
<td>MSE 436 Material Failure Analysis</td>
<td></td>
</tr>
<tr>
<td>MSE 470 Application of Materials Engineering to Design Problems</td>
<td></td>
</tr>
<tr>
<td>MSE 585 Materials Characterization Techniques</td>
<td></td>
</tr>
<tr>
<td>EE 305 Electrical Circuits and Electronics</td>
<td></td>
</tr>
<tr>
<td>Technical Elective [1]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Semester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 480 Materials Design</td>
<td>3</td>
</tr>
<tr>
<td>MSE 538 Metals Processing</td>
<td></td>
</tr>
<tr>
<td>Technical Elective [1]</td>
<td></td>
</tr>
<tr>
<td>UK Core – Citizenship - USA</td>
<td></td>
</tr>
<tr>
<td>UK Core – Global Dynamics</td>
<td></td>
</tr>
</tbody>
</table>

*Courses are required for Engineering Standing. A cumulative UK GPA of at least 2.5 and successful completion of all pre-major courses. Successful completion of the following courses with at least a 2.5 GPA: CHE 105, CHE 107, CHE 111, CHE 113, CIS 110/WRD 110, MA 113, MA 114, MA 213, PHY 231, and PHY 241. Completion of MSE 201 with a grade of C or better. If a course is repeated, the best grade will be used for calculation of GPA in the above listed courses.

*Δ Students taking ENG 101 (ENGL 101) and ENG 102 should also complete COM 181 (COMM 103), COM 252 (COMM 302), COM 281 (COMM 301), or COM 287.

§ Transfer students will take EGR 215, Introduction to the Practice of Engineering for Transfer Students, in place of EGR 101 and EGR 103.

† † Students must complete both EGR 101 and EGR 103 to fulfill the UK Core Arts and Creativity requirement. Transfer students may satisfy the UK Core Arts and Creativity requirement by taking EGR 215.

[1] Technical Electives – total of 6 credit hours and must be chosen. Technical electives are to be selected from a technical discipline, with approval from the Director of Undergraduate Studies. At least 3 credit hours must come from a course with a MSE prefix. MSE 395 (research) may count for one elective, but not both. Recommended technical electives include but are not limited to: MSE 395, 506, 531, 552, 554, 556, 569, 599; BME 488; CHE 580; CME 542, 599; MA 322 (MATH 215), 422, 432G; ME/MFS 503

∞ Graduation Composition and Communication Requirement (GCCR) course.

$ Online courses do not transfer. Chemistry labs must be in person.

University of Kentucky is accredited by the Southern Association of Colleges and Schools Commission on Colleges to award associate, baccalaureate, masters, and doctorate degrees. Contact the Commission on Colleges at 1866 Southern Lane, Decatur, Georgia 30033-4097, call 404-679-4500, or online at www.sacscoc.org for questions about the accreditation of University of Kentucky.
Mechanical Engineering

Freshman Year

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 101 Engineering Exploration I § † *</td>
<td>1</td>
</tr>
<tr>
<td>EGR 102 Fundamentals of Engineering Computing*</td>
<td>C S 130 2</td>
</tr>
<tr>
<td>CIS/WRD 110 Composition and Communication I*</td>
<td></td>
</tr>
<tr>
<td>MA 113 Calculus I</td>
<td>MATH 117 4</td>
</tr>
<tr>
<td>PHY 231 General University Physics*</td>
<td>PHYS 205 4</td>
</tr>
<tr>
<td>PHY 241 General University Physics Laboratory*</td>
<td>PHYS 205 4</td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGR 103 Engineering Exploration II § † *</td>
<td>2</td>
</tr>
<tr>
<td>MA 114 Calculus II *</td>
<td>MATH 118 4</td>
</tr>
<tr>
<td>CIS/WRD 111 Composition and Communication II</td>
<td></td>
</tr>
<tr>
<td>CHE 105 General College Chemistry I*</td>
<td>CHEM 105 4</td>
</tr>
</tbody>
</table>

| UK Core ‡ – Social Sciences | |

Sophomore Year

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA 213 Calculus III*</td>
<td>MATH 216 4</td>
</tr>
<tr>
<td>PHY 232 General University Physics*</td>
<td>PHYS 206 4</td>
</tr>
<tr>
<td>PHY 242 General University Physics Laboratory*</td>
<td>PHYS 206 1</td>
</tr>
<tr>
<td>EM 221 Statics*</td>
<td></td>
</tr>
<tr>
<td>ME 205 Computer Aided Engineering Graphics</td>
<td></td>
</tr>
</tbody>
</table>

| Guided Elective or UK Core ‡ – Humanities | |

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 220 Engineering Thermodynamics I</td>
<td></td>
</tr>
<tr>
<td>ME 251 Introduction to Materials and Manufacturing Processes</td>
<td></td>
</tr>
<tr>
<td>MA 214 Calculus IV</td>
<td>MATH 301 3</td>
</tr>
<tr>
<td>EM 313 Dynamics</td>
<td></td>
</tr>
</tbody>
</table>

| Guided Elective or UK Core ‡ – Humanities | |

UK Core ‡ – Statistical Inferential Reasoning	
Recommanded: STA 210 Making Sense of Uncertainty	or
An Introduction to Statistical Reasoning or STA 381 Engineering Statistics – A Conceptual Approach	

Junior Year

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM 302 Mechanics of Deformable Solids</td>
<td></td>
</tr>
<tr>
<td>EE 305 Electrical Circuits and Electronics</td>
<td></td>
</tr>
<tr>
<td>ME 330 Fluid Mechanics</td>
<td></td>
</tr>
<tr>
<td>ME 340 Introduction to Mechanical Systems</td>
<td></td>
</tr>
<tr>
<td>WRD 204 Technical Writing**</td>
<td></td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 310 Engineering Experimentation I</td>
<td></td>
</tr>
<tr>
<td>ME 321 Engineering Thermodynamics II</td>
<td></td>
</tr>
<tr>
<td>ME 352 Elements of Heat Transfer</td>
<td></td>
</tr>
<tr>
<td>ME 344 Mechanical Design</td>
<td></td>
</tr>
<tr>
<td>Mathematics Elective**</td>
<td></td>
</tr>
</tbody>
</table>

Senior Year

First Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 411 ME Capstone Design I</td>
<td></td>
</tr>
<tr>
<td>ME 311 Engineering Experimentation II</td>
<td></td>
</tr>
<tr>
<td>ME 440 Design of Control Systems</td>
<td></td>
</tr>
<tr>
<td>ME 501 Mechanical Design with Finite Element Methods or ME 590 Computational Fluid Dynamics</td>
<td></td>
</tr>
</tbody>
</table>

| Technical Elective†‡ | |

Second Semester

<table>
<thead>
<tr>
<th>Course</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 412 ME Capstone Design II</td>
<td></td>
</tr>
<tr>
<td>Technical Elective†‡</td>
<td></td>
</tr>
<tr>
<td>Technical Elective†‡</td>
<td></td>
</tr>
</tbody>
</table>

| UK Core ‡ – Citizenship - US | |
| UK Core ‡ – Global Dynamics | |

*Courses required for Engineering Standing. A cumulative UK GPA of at least 2.5 and successful completion of all pre-major courses. Successful completion of the following courses with at least a 2.5 GPA: CHE 105, CIS 111/WRD 111, EGR 101, EGR 102, EGR 103 (or EGR 215 in lieu of EGR 101 and EGR 103), EM 221, MA 113, MA 114, MA 213, PHY 231, PHY 241, PHY 232, and PHY 242 and a C or better in each course. If a course is repeated, the best grade will be used for calculation of GPA in the above listed courses.

† Students taking ENGL 101 (ENG1 101) and ENG 102 should also complete COM 181 (COMM 103), COM 252 (COMM 302), COM 281 (COMM 301), or COM 287.

§ Transfer students will take EGR 215, Introduction to the Practice of Engineering for Transfer Students, in place of EGR 101 and EGR 103.

†† Technical Electives – choose one course from approved list.

‡‡Technical Electives – choose 9 hours from approved list.

$ Online courses do not transfer. Chemistry labs must be in person.

University of Kentucky is accredited by the Southern Association of Colleges and Schools Commission on Colleges to award associate, baccalaureate, masters, and doctorate degrees. Contact the Commission on Colleges at 1866 Southern Lane, Decatur, Georgia 30033-4097, call 404-679-4500, or online at www.sacscoc.org for questions about the accreditation of University of Kentucky.
<table>
<thead>
<tr>
<th>Mathematics Elective</th>
<th>Hours</th>
<th>Technical Electives</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choose one course from the following:</td>
<td></td>
<td>Choose 9 hours from the following:*</td>
<td></td>
</tr>
<tr>
<td>MA 320 Introductory Probability</td>
<td>3</td>
<td>ME 380 Topics in Mechanical Engineering (Variable Topics)</td>
<td>3</td>
</tr>
<tr>
<td>MA 321 Introduction to Numerical Methods</td>
<td>3</td>
<td>ME 395 Independent Work in Mechanical Engineering</td>
<td>1-3</td>
</tr>
<tr>
<td>MA 322 Matrix Algebra and Its Applications</td>
<td>3</td>
<td>ME 416 Automotive Technology</td>
<td>3</td>
</tr>
<tr>
<td>MA 416G Introduction to Optimization</td>
<td>3</td>
<td>ME 417 Sheet Metal Forming</td>
<td>3</td>
</tr>
<tr>
<td>MA 432G Methods of Applied Mathematics I</td>
<td>3</td>
<td>ME 418 Automotive Assembly and Quality Control</td>
<td>3</td>
</tr>
<tr>
<td>MA 433G Introduction to Complex Variables</td>
<td>3</td>
<td>ME 501 Mechanical Design with Finite Element Methods</td>
<td>3</td>
</tr>
<tr>
<td>MA 481G Differential Equations</td>
<td>3</td>
<td>ME/MFS 503 Lean Manufacturing Principles and Practices</td>
<td>3</td>
</tr>
<tr>
<td>STA 381 Engineering Statistics – A Conceptual Approach</td>
<td>3</td>
<td>ME/MFS 505 Modeling of Manufacturing Processes and Machines</td>
<td>3</td>
</tr>
<tr>
<td>Subtotal: Mathematics Elective</td>
<td>3</td>
<td>ME/MSE 506 Mechanics of Composite Materials</td>
<td>3</td>
</tr>
<tr>
<td>ME/MFS 507 Design for Manufacturing</td>
<td>3</td>
<td>ME/MFS 511 Machining of Materials and Applications</td>
<td>3</td>
</tr>
<tr>
<td>ME/MFS 512 Manufacturing Systems</td>
<td>3</td>
<td>ME/MFS 513 Mechanical Vibrations</td>
<td>3</td>
</tr>
<tr>
<td>ME 514 Computational Techniques in Mechanical System Analysis</td>
<td>3</td>
<td>ME 515 Rotordynamics of Turbomachinery</td>
<td>3</td>
</tr>
<tr>
<td>ME 516 Systems Engineering</td>
<td>3</td>
<td>ME/EE/MFS 526 Lean Operations Management I</td>
<td>3</td>
</tr>
<tr>
<td>ME 527 Applied Mathematics in the Natural Sciences I</td>
<td>3</td>
<td>ME 530 Gas Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>ME 531 Fluid Dynamics I</td>
<td>3</td>
<td>ME 532 Advanced Strength of Materials</td>
<td>3</td>
</tr>
<tr>
<td>ME 542 Kinematic Synthesis of Mechanisms</td>
<td>3</td>
<td>ME 548 Aerodynamics of Turbomachinery</td>
<td>3</td>
</tr>
<tr>
<td>ME 549 Power Generation</td>
<td>3</td>
<td>ME/EE/MSE 554 Chemical and Physical Processing of Polymer Systems</td>
<td>3</td>
</tr>
<tr>
<td>ME/MFS/CME/MSE 555 Introduction to Micro-/Nano-Electromechanical Systems</td>
<td>3</td>
<td>ME/EE/MSE 556 Introduction to Composite Materials</td>
<td>3</td>
</tr>
<tr>
<td>ME/MFS/CME/MSE 557 Introduction to Materials Science</td>
<td>3</td>
<td>ME 560 Engineering Optics</td>
<td>3</td>
</tr>
<tr>
<td>ME 563 Basic Combustion Phenomena</td>
<td>3</td>
<td>ME 565 Scale Modeling in Engineering</td>
<td>3</td>
</tr>
<tr>
<td>ME/EE/MSE 570 Fundamentals of Nanoelectric Devices and Materials</td>
<td>3</td>
<td>ME/EE/MSE 583 Industrial Energy Utilization and Assessment</td>
<td>3</td>
</tr>
<tr>
<td>ME/BAE/EGR/MSE 583 Industrial Energy Utilization and Assessment</td>
<td>3</td>
<td>ME 585 Fourier Series and Boundary Value Problems</td>
<td>3</td>
</tr>
<tr>
<td>ME 590 Applied CFD and Numerical Heat Transfer</td>
<td>3</td>
<td>ME 599 Topics in Mechanical Engineering (Subtitle required)</td>
<td>3</td>
</tr>
<tr>
<td>MFS 599 Topics in Manufacturing Systems Engineering (Subtitle required)</td>
<td>3</td>
<td>Non-ME Technical Electives</td>
<td></td>
</tr>
<tr>
<td>BAE 502 Modeling of Biological Systems</td>
<td>3</td>
<td>BAE 515 Fluid Power Systems</td>
<td></td>
</tr>
<tr>
<td>BAE 516 Control of Off-Road Vehicles</td>
<td>3</td>
<td>EGR 523 Concepts, Assessment Tools and Methods in Sustainable Power and Energy</td>
<td></td>
</tr>
<tr>
<td>BME 440 Introduction to Biomedical Signal Processing</td>
<td>3</td>
<td>EGR 540 Power Economics and Public Policy</td>
<td></td>
</tr>
<tr>
<td>BME 472 Human Biomechanics</td>
<td>3</td>
<td>EGR 542 Electric Power Generation Technologies</td>
<td></td>
</tr>
<tr>
<td>BME 473 Fundamentals of Biologic Mechanics</td>
<td>3</td>
<td>EGR 546 Electric Power System Fundamentals</td>
<td></td>
</tr>
<tr>
<td>BME 488 Introduction to Biomaterials</td>
<td>3</td>
<td>EGR 553 Environmental Consequence of Energy Production</td>
<td></td>
</tr>
<tr>
<td>BME 532 Modeling of Physiological Systems</td>
<td>3</td>
<td>EGR 563 Environmental Consequence of Energy Production</td>
<td></td>
</tr>
<tr>
<td>BME 540 Biomedical Instrumentation</td>
<td>3</td>
<td>ME 509 Leadership for a Lean Enterprise</td>
<td></td>
</tr>
<tr>
<td>BME 550 Introduction to Biomedical Imaging</td>
<td>3</td>
<td>MFS/MNG 520 Industrial Automation and Control</td>
<td></td>
</tr>
<tr>
<td>BME 571 Mechanical Modeling of Human Motion</td>
<td>3</td>
<td>MFS 525 Organizational Learning for Lean Manufacturing</td>
<td></td>
</tr>
<tr>
<td>BME 573 Cell Mechanics and Mechanobiology</td>
<td>3</td>
<td>MFS 581 Quality Control</td>
<td></td>
</tr>
<tr>
<td>BME 579 Neural Engineering: Merging Engineering with Neuroscience</td>
<td>3</td>
<td>MFS 599 Topics in Manufacturing Systems Engineering (Subtitle required)</td>
<td></td>
</tr>
<tr>
<td>EGR 523 Concepts, Assessment Tools and Methods in Sustainable Power and Energy</td>
<td>3</td>
<td>MSE 201 Materials Science</td>
<td></td>
</tr>
<tr>
<td>EGR 540 Power Economics and Public Policy</td>
<td>3</td>
<td>MSE 515 Fluid Power Systems</td>
<td></td>
</tr>
<tr>
<td>EGR 542 Electric Power Generation Technologies</td>
<td>3</td>
<td>MSE 554 Chemical and Physical Processing of Polymer Systems</td>
<td></td>
</tr>
<tr>
<td>EGR 546 Electric Power System Fundamentals</td>
<td>3</td>
<td>MSE/557 Introduction to Materials Science</td>
<td></td>
</tr>
<tr>
<td>EGR 553 Environmental Consequence of Energy Production</td>
<td>3</td>
<td>MSE/EE/MSE 555 Introduction to Micro-/Nano-Electromechanical Systems</td>
<td></td>
</tr>
<tr>
<td>MFS 599 Topics in Manufacturing Systems Engineering (Subtitle required)</td>
<td>3</td>
<td>ME/EE/MSE 556 Introduction to Composite Materials</td>
<td></td>
</tr>
</tbody>
</table>

* A minimum of 6 credit hours (two courses) must have an ME prefix or be cross-listed as an ME course. A maximum of 3 credit hours (one course) may be chosen from technical electives with prefixes other than ME. Exceptions only with the approval of the Director of Undergraduate Studies.
Mining Engineering

Freshman Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Details</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>CHE 105 General College Chemistry I*</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CIS/WRD 110 Composition and Communication I*Δ</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EGR 101 Engineering Exploration I §</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>EGR 102 Fundamentals of Engineering Computing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA 113 Calculus I*</td>
<td></td>
</tr>
<tr>
<td>Second Semester</td>
<td>CIS/WRD 111 Composition and Communication II Δ</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EGR 103 Engineering Exploration II § 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA 114 Calculus II*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHY 231 General University Physics*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PHY 241 General University Physics Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHE 111 General Chemistry I Laboratory ¶$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UK Core – Social Sciences</td>
<td>1</td>
</tr>
</tbody>
</table>

Sophomore Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Details</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>EES 220 Principles of Physical Geology</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>EM 221 Statics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA 213 Calculus III*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MNG 201 Mining Engineering Fundamentals</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHY 232 General University Physics</td>
<td></td>
</tr>
<tr>
<td>Second Semester</td>
<td>EES 230 Fundamentals of Geology</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EM 302 Mechanics of Deformable Solids</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MA 214 Calculus IV*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MNG 291 Elements of Mine Design</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MNG 303 Deformable Solids Laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MNG 322 Mine Safety and Health Management and Processes</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MNG 331 Explosives and Blasting</td>
<td></td>
</tr>
</tbody>
</table>

*Courses are required for Engineering Standing. A cumulative UK GPA of at least 2.5 and successful completion of all pre-major courses. Successful completion of the following courses with at least a 2.5 GPA: CIS 110/WRD 110, CHE 105, MA 113, MA 114, MA 213, and PHY 231. If a course is repeated, the best grade will be used for calculation of GPA in the above listed courses.

Δ Students taking ENG 101 (ENGL 101) and ENG 102 should also complete COM 181 (COMM 103), COM 252 (COMM 302), COM 281 (COMM 301), or COM 287.

§ Transfer students will take EGR 215, Introduction to the Practice of Engineering for Transfer Students, in place of EGR 101 and EGR 103.

† Students must complete both EGR 101 and EGR 103 to fulfill the UK Core Arts and Creativity requirement. Transfer students may satisfy the UK Core Arts and Creativity requirement by taking EGR 215.

‡ Students only required to take one lab. Consult with advisor.

∞ Graduation Composition and Communication Requirement (GCCR) course.

†† MNG 335 satisfies the Statistical Inferential Reasoning requirement in the UK Core.

**Courses recommended as technical electives are listed below. These courses must be chosen with the approval of the student’s advisor to ensure that the curriculum includes sufficient engineering design content.

Technical Electives: Students are required to select their technical elective from the departmental courses listed below:

- MNG 511 Mine Power System Design
- MNG/MFS 520 Industrial Automation and Control
- MNG 531 Advanced Blast Design and Technology
- MNG 541 Computer Design of Mine Ventilation Systems

$ Online courses do not transfer. Chemistrabls must be in person.

University of Kentucky is accredited by the Southern Association of Colleges and Schools Commission on Colleges to award associate, baccalaureate, masters, and doctorate degrees. Contact the Commission on Colleges at 1866 Southern Lane, Decatur, Georgia 30033-4097, call 404-679-4500, or online at www.sacscoc.org for questions about the accreditation of University of Kentucky.
MNG 555 Advanced Geomechanics I
MNG 561 Mine Construction Engineering I
MNG 575 Coal Preparation Design
MNG 580 Mineral Processing Plant Design
MNG 585 Applied Surface Chemistry
MNG 599 Topic in Mining Engineering